1) Jacobi polynomials
雅可比多项式
1.
Jacobi polynomials and its special forms are all fundamental orthogonal polynomials,these polynomial all have important application in the mathematics-physics question.
雅可比多项式及其特例都是重要的正交多项式,它们在求解数学物理方程中有重要应用。
2) Jacobi's polynomials
雅谷比多项式
3) Jacobi determinant
雅可比行列式
1.
It' s proved that the four forms of chemical potential are identical according ot the properties of Jacobi determinant and thermodynamic principle.
本文利用雅可比行列式的性质及热力学原理,证明了化学势的四种形式是完全等价的,并且给单组分体系的摩尔量以确切的定义。
4) jacobian determinant
雅可比行列式
1.
Jacobian Determinant and Its Application to Thermodynamics;
雅可比行列式及其在热力学中的应用
2.
With applying Jacobian determinant,the equilibrium and stability conditions CV>0,{P/V}T<0 and other forms in the isolated homogeneous system have been deduced by entropy criterion and internal energy criterion.
应用雅可比行列式,根据熵判据和内能判据详细推求了孤立的均匀物质系统的平衡稳定性条件CV>0,{P/V}T<0及其它多种表达形式。
3.
The Maxwell relations between the thermodynamic functions were derived with the matrix analysis according to the characteristics of Jacobian determinant in present paper.
本文根据雅可比行列式的性质,利用矩阵分析的方法,得到热力学中物理量之间的麦克斯韦关系,同时给出一种容易记忆的方法。
5) Jacobian logarithm formula
雅可比对数式
1.
The generation and utilization of extrinsic information is deeply analyzed during the iterative decoding process,and some simplification for branch metric calculation is presented in detail with the trait of Jacobian logarithm formula.
基于AWGN信道研究了对数域内T-TCM译码算法的表述与简化,重点分析了外信息在迭代译码过程中的产生与使用,结合雅可比对数式的特点详细给出分支度量计算的简化策略。
2.
A theoretical explanation is given by analyzing the Jacobian logarithm formula and iterative decoding algorithm, and based on the explanation a new T-TCM decoding scheme without SNR estimation is further proposed, with which the T-TCM systems have no performance loss and can be more conveniently applied and easily implemented.
该文结合雅可比对数式及迭代译码算法的特点从理论上给出了解释,进一步提出无需SNR估计的T-TCM译码方案,在保证性能没有损失的前提下降低了T-TCM的应用要求与实现复杂度。
6) Jacobian
[dʒæ'kəubiən]
雅可比行列式
1.
The second order Jacobian J_2 is calculated to determine the delay time T of two-dimensional reconstruction about ordinary differential equation according to the first extreme value of J_2.
提出了二阶雅可比行列式的第一极值来确定二维重构系统的延迟时间,它比用互信息函数第一极小确定延迟时间等方法,可以给出更多信息。
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。