1) Laplace image space
拉氏象空间
2) Laplace space
拉氏空间
3) Euclid space
欧氏空间
1.
Important conclusions of Gram determinants in Euclid space;
Gram行列式在欧氏空间中几个重要结论
2.
By using the co-ordinate transform between the general base and the orthogonal base of the Euclid space, the current signal is decomposed to a series of orthogonal currents including a broad-sense fundamental current and a harmonic current.
利用欧氏空间普通基与正交基之间的坐标变换,将电流分解为两两正交的一个广义基波电流和一系列广义谐波电流,在此基础上提出了一种新的功率定义方法,使传统单相电路的功率理论成为本方法的一种特例。
3.
By the relation transvection,we obtain two necessary and sufficient conditions for the transformation being linear transformation in Euclid spaces,and out of it,we have got some conclusions.
借助内积关系 ,给出了欧氏空间的变换是线性变换的两个充要条件 ,并由此得到一些相关结论 。
4) Euclidean space
欧氏空间
1.
On distance between a p-dimensional plane and a q-dimensional plane in Euclidean space E~n;
欧氏空间E~n中任意两个平面间的距离
2.
Curvature and geometric property of submanifolds in Euclidean spaces;
欧氏空间中子流形的曲率与几何性质
3.
Generalized normal operator and generalized normal matrix on the general Euclidean space;
一般欧氏空间上的广义规范算子与广义规范矩阵
5) Euler space
欧拉空间
6) space imagine
空间意象
1.
Arnheim’s architecture space idea focuses attention on the perception characters of architecture space, emphasizes on whole architecture space imagine, explains architecture space implication with visual dynamics.
阿恩海姆的建筑空间观,关注的就是建筑空间的视知觉属性,强调建筑的整体空间意象,用视觉动力阐释建筑空间意蕴。
补充资料:欧氏空间
见弯曲空间。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条