说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模糊无后效马尔科夫链
1)  fuzzy aftereffectless Markov chain
模糊无后效马尔科夫链
2)  fuzzy Markov chain
模糊马尔科夫链
1.
Combining the engineering characteristic and the theory of Markov chain, this paper inferred the forecast model of fuzzy Markov chain, which had the fuzzy division of conditions and characteristics of no following effects in the main.
针对工程问题的特点结合马尔科夫链理论 ,提出了具备状态模糊划分和具有“大体无后效性”特点的模糊马尔科夫链状的预测模型。
2.
By establishing the prediction model for deterioration of reinforced concrete bridge based on the fuzzy Markov Chain,this paper expatiates the classification of deterioration grades of bridge structure and determination methods for fuzzy deterioration states.
建立基于模糊马尔科夫链的钢筋混凝土桥梁劣化预测模型,对桥梁结构劣化等级的划分及模糊劣化状态的确定方法进行阐述。
3)  fuzz Markov chain model
模糊马尔科夫链模型
4)  non-aftereffect property of Markov chain
马尔柯夫链的无后效性
1.
Using the non-aftereffect property of Markov chain and statistics of annual incomings and outgoings of Changchun townsfolk in 1998 and 1999,annual outgoing of 8 terms from 2000 to 2005 are forecasted,in which the key factors are outgoings descending in daily life and increasing in education,traffic and telecommunication.
利用长春市居民1998、1999连续两年的收、支数量变化,借助于马尔柯夫链的无后效性性质,预测2000~2005年6年的8项支出量。
5)  FUzzy-Markovian Chain
模糊马尔可夫链
1.
According to the statistic data on hazards occurred in Xinjiang line of New Eurasian Continental Bridge in recent 40 years, the number of dameged sectors in Xinjiang line is analyzed and forecasted by using fuzzy-Markovian chain forecasting method and principle.
根据新亚欧大陆桥新疆段近40年灾害统计资料,基于模糊马尔可夫链状预测的方法与原理,通过模糊状态的划分和模糊运算,根据隶属度最大原则,确定所属的状态,对新疆段受损区段数进行了预测,预测准确率为75%,取得了预期的效果。
6)  Markov model
马尔科夫链模型
1.
The network throughput and average delay were investigated by numerical analysis and simulation experiments through discrete time Markov model.
通过建立一个离散马尔科夫链模型对塑料光纤接入网的网络吞吐量和平均延时时间进行了数值分析和仿真实验,结果证明,这种多优先级控制协议能够适应多媒体网络中各类业务对信号时延要求的不同进行信道的优先级分配。
补充资料:麦科洛后效
      C.麦科洛1965年发现的一种颜色视觉的附随性后效现象。她先让观察者交替观察通过红色滤光片投射的黑-白垂直栅条,和通过绿色滤光片投射的黑-白水平栅条,把这两个图形作为适应图形。若干分钟之后再呈现一个测验图形,这个测验图形一半是黑-白垂直栅条;另一半是黑-白水平栅条,这时观察者就把图形上所有的白垂直栅条看成是发绿的,把所有白水平栅条看成是发红的。这种现象就是麦科洛颜色后效(图1)。
  
  
  这个后效不能用后象或相继对比效应进行解释,因为这两种效应的色调只是一种均匀的色调,而麦科洛后效的色调是由测验图形的栅条方向决定的。当两个交替适应图形的方向差别为90°时,颜色后效最强(见彩图)。当方向差别逐渐变小时,颜色效应也随之减弱。  麦科洛在解释这种效应时,提出了一个简单的神经生理学假设,即大脑中对红色反应的细胞群和对绿色反应的细胞群是一对颉颃性的细胞群。在观察适应图形后,对红色垂直栅条反应的细胞群由于适应而处于抑制状态。从而失去了与起颉颃作用的细胞群的平衡,使对垂直绿栅条反应的细胞群处于兴奋状态,这样垂直的白栅条看起来便发绿了。同样,当绿色水平细胞群因适应处于抑制状态时,红色水平细胞群便处于兴奋状态,因此水平白栅条看起来便发红了。麦科洛效应不仅表现为把无彩色的图形看成有彩色的,而且其持续时间可长达几小时甚至几星期。
  
  
  麦科洛发现这一效应后,引起了人们对其他一些附随性后效的研究。其中的一个实验是,让被试交替观察两个方向相反的螺旋图形(图2),反时针方向的为红色,顺时针方向的为绿色,把两个螺旋图形放在转轮上旋转,红色螺旋看起来向外膨胀(称膨胀螺旋),绿色螺旋向内收缩(称收缩螺旋)。将它们作为适应图形,然后再用一个黑-白膨胀螺旋和一个黑-白收缩螺旋进行测验,观察者会把膨胀螺旋和收缩螺旋分别看成是绿色的和红色的,这便是运动-附随颜色效应。当用一个固定的红螺旋和一个固定的绿螺旋进行测验时,观察者会把红螺旋看成是收缩的,而把绿螺旋看成是膨胀的。这就是颜色-附随运动效应。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条