1) Derivation
[英][,derɪ'veɪʃn] [美]['dɛrə'veʃən]
求导法
1.
A Discussion On the Rationality of the Derivation of Logarithm;
试论对数求导法的合理性
2.
This paper pointed out that,auxiliary derivation can avoid the application of the system of linear equations,thus simplify the calculation process.
本文将指出,辅以求导法可避免线性方程组的应用,从而将计算过程简化。
3.
This paper first shows an identity,then in virtue of variable substitution and derivation and the identity offered two types of new differential equations are given,and their integrability isproved.
本文先提出一个恒等式,再借助变量替换及求导法,利用所得的恒等式,给出了两类新的微分方程,论证了它们的可积性。
2) derivation rule
求导法则
1.
A footnote about derivation rule of compound function;
关于复合函数的求导法则所进行的一个注脚
2.
The paper gives a derivation rule of the power exponential function and analyzes some common calculation methods.
证明了一条幂指函数的求导法则,并总结了幂指函数导数计算的常用方法。
3) derivation method
求导法则
1.
By means of variable substitution and complex functional derivation method,this paper gives a new kind of four order different equation,some kind of solution with sufficient and necesiory conditions.
借用变量替换法及复合函数求导法则,提出新一类四阶微分方程,具有某种形式的解的充要条件,所得结论是对有关文献结果的推广与扩充。
2.
The paper gives four kinds of differential equation and their expressions; and by means of derivation method of functional iteration and variable upper limit equation it discusses about their integrality.
提出四类积分微分方程组,借助函数迭代法及变上限函数的求导法则,论证其可积性,前三个定理给出求解公式,列举了实例。
3.
By means of variable transformation and derivation method,this papers gives the sufficient conditions of one kind of new nonlinean differential equation,and puts forth the general solution of parameters.
借助变量替换法及求导法则 ,给出一类新的非线性常微分方程的可积充分条件 ,并提供参数形式的通解 ,所得结论推广了相应文献的结果。
4) velocity-differentiating method
速度求导法
5) load derivation
负荷求导法
1.
A novel method called load derivation is introduced for ultra-short term load forecasting of power system.
负荷求导法是超短期电力负荷预测的一种新方法。
6) differential optimization
求导寻优法
1.
The comparision of the method to several definite differential optimization methods is done.
将一维优化方法中的黄金分割法推广应用于无约束多元优化问题的求解中 ,给出了具体的算法实施过程 ,并与目前现有的几种确定性求导寻优法进行了理论比较 。
补充资料:法性属法为法性土
【法性属法为法性土】
谓真如法性之理,譬如虚空,遍一切处,乃是法身所证之体,即为所依之土,故名法性属法,为法性土。
谓真如法性之理,譬如虚空,遍一切处,乃是法身所证之体,即为所依之土,故名法性属法,为法性土。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条