1) Spline martix
有限样条元
2) spline finite element
样条有限元
1.
In this paper, the researches on static equilibrium and dynamic equilibrium of the soil under foundation by coupling the spline finite element method and semi-analytical infinite element method, several computer programs are compiled.
采用样条有限元和无限元耦合方法,对基础下土体的静、动力平衡问题进行分析研究,并编制了专用计算程序。
2.
The spline finite element and the semi analytical infinite element are used to investigate the infinite soil.
针对成层地基,用样条有限元与半解析无限元耦合法分析水平方向无限伸展的地基土,对结构-地基-结构进行了地震反应分析,并在分析中考虑了地震波存在的衰减和相位差,得到了不同结构-地基-结构相互作用之间的一些规
3.
The spline finite element method is used to investigate the pile-soil system in the near field.
运用惯性耦合法分析地基上相邻建筑物的相互作用,并将样条有限元法分析直接承受建筑物的桩基和土体,用半解析无限元法分析外围半无限土体。
3) the spline finite element
样条有限元
1.
Based on the analysis of the Piles-Soil Interaction by the spline finite element and the semi-analytical,the paper compares the difference between noninteraction and interaction.
用样条有限元法和半解析无限元法分析了桩—土相互作用体系,通过比较不考虑相互作用和考虑相互作用时计算结果的差异,说明抗震中考虑桩—土相互作用的必要性。
2.
The structure-basements-piles-soil interaction was analysised,based on the spline finite element and the semi-analytical infinite element.
计算时先将体系分为四个区域,即:桩土体系、两侧土区及上部结构,各个区域分别采用用样条有限元法和半解析无限元法进行分析,再按力的平衡与位移协调条件将各个区域联系成一整体。
4) spline finite element method
样条有限元
1.
Solution of spline finite element method of runner strength of mixed flow turbine;
混流式水轮机转轮强度的样条有限元求解
5) Spline finite element method
样条有限元法
1.
Based on Kirchhoff's classical theory and adopting the spline finite element method, three independent displacements are interpolated into the ant; symmetric angle-ply laminated plate by the spline base of the cubic spline B function, and the stiffness array and the quality array of the composite material laminated plate are derived.
基于Kirchhoff经典理论,用样条有限元法以三次B样条函数构成的样条基对反对称多层角铺设层合板的3个独立位移进行插值,推导了复合材料层合板刚度阵,质量阵列式,阻尼阵列式,并由Lagrange方程导出了层合板的动力学方程,通过瑞利一李兹法建立了特征方程。
2.
Based on Gurtin variational principle,a spline finite element method for initial value problems of plate was presented by applying spline finite element method to space domain and step by step method to time domain.
:以 Gurtin变分原理为基础 ,空间上应用样条有限元法 ,时间域上采用逐步代换的方法 ,建立了计算板动力问题的样条有限元法 。
3.
This paper reviews the developments of the spline finite element method based on the variational principle, the theory of spline function and the state space theory during the last twenty years.
主要评述基于变分原理、样条函数理论与状态空间理论的样条有限元法在近20多年来的进展以及进一步发展的趋势。
6) spline finite member element method
样条有限杆元法
1.
This paper presents a method to predict the overall stability and secondorder displacement of tall buildings using the spline finite member element method.
该文用转换B3样条函数模拟结构板壁横截面的翘曲位移,通过势能变分原理,导出微分方程组,利用样条有限杆元法对高层建筑筒体结构的整体稳定及二阶位移进行了求解。
2.
The displacement variational principle was used to develop the spline finite member element method for buckling analysis of thin walled members with shear lag effect.
根据势能驻值原理 ,提出在横向荷载作用下薄壁杆件稳定分析的样条有限杆元法。
3.
The spline finite member element method based on the potential energy principle for lateral buckling analysis of thin-walled members with arbitrary cross sections and arbitrary boundary conditions is proposed.
根据势能驻值原理,采用转换B3样条函数模拟杆件横截面的翘曲位移场,文[8]提出了用于分析在横向荷载作用下薄壁杆件稳定问题的样条有限杆元法。
补充资料:B样条曲面
B样条曲面
B-spline surface
B yangtiao qumianB样条曲面(Bsp一ine surface)用分段B样条多项式函数及控制点网格定义的面。基于B样条曲线,可以得到B样条曲面的表示式。给定(m+1)(n十l)个空间点列凡(i=0,1,…,m,]=0,1,…,n),则s(二,w)一艺艺尸。从,*(。)凡,,(w),该二0少=O u,功任[0,1」定义了kXz次B样条曲面。式中从,*(u)和凡,,(w)分别是k次和l次的B样条基函数,由凡组成 的空间网格称为B样条曲面的控制点网格。上式 也可写成如下的矩阵式称(u,二)二认呱几M王w王,y任[l,。+2一划 z任[l,n+2一z〕,u,wC〔O,1」式中y,z—表示在u,w参数方向上曲面片的 个数。 Uk=[。‘一‘,uk一2,…,u,1〕, 钱二仁砂一’,砂一2,…,w,1〕, 凡,二氏,i任[y一1,y+k一2〕, ,任仁z一1,z+z一2] 凡是某一个B样条面片的控制点编号。最常用的 是二、三次均匀B样条曲面的构造。 (1)均匀双二次B样条曲面 已知曲面的控制点巧(i,]=o,1,2),参数u、 二,且O镇u,w簇1,k=l=2,构造步骤是: ①沿w(或u)向构造均匀二次B样条曲线,即 有 ,「‘一“P0(w,一L矿“」[一::侃同哪 WMs经转置后尸。(w)=「尸oo尸。,尸。2〕磷wT;同上可得P,(二)=[尸,。尸,,尸,2」M五WT pZ(二)=[pZ。p21 p22]M百wT ②再沿u(或w)向构造均匀二次B样条曲线,即可得到均匀双二次B样条曲面。 ,L 11﹁.!一|到泊恤、、/)pp(w嘿的嘿编s(u,w)二UM日(w T W TB M翻川州护P PP=UM白 匕PZo P21简记为s(u,二)二〔侧砂呵百wl (2)均匀双三次B样条曲面 已知曲面的控制点八(£,j=o,1,2,3),参数u,二且“,w任【0,1],构造双三次B样条曲面的步骤同上述,其矩阵形式是 S(u,w)=L时正声吸至百wT, 门几创川川旧洲翻叼--302 1222犯尸尸尸P尸尸尸尸尸冲尸峥 一一 P月J月j 3一6,l八、︶n”4.内J,1卜|匡IL 1一6 一一 姚双三次B样条曲面如图1所示。图1双三次B样条曲面
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条