1) nonlinear algebraic equation
非线性代数方程
1.
In this paper,simulation of nonlinear algebraic equations with PSPICE is discussed.
本文讨论了非线性代数方程的PSPICE模拟问题,提出了K维非线性受控源及规则电路模型的概念。
2.
By using trial function method and introducing a new transformation, the nonlinear partial differential equation that is hard to be solved by making use of the regular technique can be reduced to a set of nonlinear algebraic equations, which can be easily solved, and their related coefficients can be easily determined by virtue of taking advantage of the approach of undetermined coefficients.
通过引入一个新的变换,利用试探函数法,并选取准确的试探函数形式,将一个难于求解的非线性偏微分方程化成了一组易于求解的非线性代数方程,从而简洁地求得了KdV方程的孤子解,所得结果与已有结果完全吻合。
2) High dimension nonlinear algorithm equation
高维非线性代数方程
3) nonlinear algebraic equations
非线性代数方程组
1.
In order to solve complicated nonlinear algebraic equations, the matrix splitting based method for solving linear algebraic equations was generalized, then a new mapping splitting based method was presented in this paper.
为了求解复杂的非线性代数方程组,将线性代数方程组的矩阵分裂法推广至非线性方程组,提出了映射分裂法。
2.
The Burgers equation is changed into nonlinear algebraic equations based on the trigonometric series,thus it can be solved by using the Maple software.
用三角级数试探求解Burgers方程,得到关于待定系数的非线性代数方程组,利用M ap le软件求解此非线性代数方程组,进而求得Burgers方程的精确解。
4) nonlinear differential-algebraic equations
非线性微分代数方程
1.
General one-leg methods and linear multistep methods are applied to the continuous-time waveform relaxation iteration schemes for a class of nonlinear differential-algebraic equations and the discrete-time waveform relaxation schemes are obtained.
针对一类非线性微分代数方程连续时间波形松弛迭代格式,应用一般的单支方法和线性多步法,得到离散时间波形松弛迭代格式。
5) nonlinear algebraic-differential equations
非线性代数-微分方程
6) roots of systems of nonlinear algebraic equations
非线性代数方程组的根
补充资料:非线性代数方程组数值解法
非线性代数方程组数值解法
numerical solution for system of nonlinear algebraic equations
k=2,3,二’式中久二f【几,几一1〕+f【xk,几一1,xk一2〕(x。-xk_l),“士”号选取与久同号,f〔·,门,f〔·,·,·〕分别表示了(x)在相应点的一阶与二阶差商,抛物线法每步也只算一个新函数值f(xk),其收敛阶为P二1.839..·,效率比割线法又有提高,且可求方程的复根,因此也是非线性方程数值解的常用算法。 科学和工程计算中经常用到非线性方程和方程组数值解法,如在各种非线性力学问题、电路问题、经济平衡问题、非线性规划以及非线性微分方程数值解法中都要用到。·182·非习卜其中式中矩阵A(护,矿)的元素〔A(犷,矿)]。二人(护十砧ej)一关(犷) 心(i,,=1,2,…,,),其中ej为(一X(一X﹄fl一口几一aa一刁一)旦工互宜立l二LJ劣」刁几(xk) 日x,是了(犷)的雅可比矩阵。当x0是解x“的一个较好近似时,牛顿迭代序列(4)是2阶收敛的。由犷计算*1的步骤为:①计算f(/)及:黔」。②用直接法解线性方程组{碧」、一f(/),称为牛顿方程。③计算砂+1二犷十△尹。编程上机计算到}}扩一护+l}}簇。,或}}了(犷)}}(。停止,其中。为给定精度。牛顿法的优点是收敛快且可以自*丫,上。二止二比,.二LI.,「af(扩)1一华l多」J二,叫仄J际人不巨下牙兰夕3丈卜.J子丁比川L妇尸于l一气万一{,J一了F L口XJ坐标向量,矿=(哟,…,磷)T,这个方法具有超线性敛速,当矿=f(犷)=(fl(犷),…,几(尹))T时,公式(7)称为牛顿一斯蒂芬森方法,它具有2阶敛速。 在牛顿法(4)中,若解牛顿方程组不用直接法,而采用解线性方程组的迭代法,则得一类非线性与线性的双重迭代法,这类方法常用牛顿一SOR迭代法。此外,还可将解线性方程组迭代法思想用于解非线性方程组,得到一类非线性松弛法,如以〕R一牛顿法,这类方法优点是程序简单,存储量省,但收敛较慢。 拟牛顿法是一类不用计算f(x)的雅可比矩阵,又具有超线性收敛的算法。它是60年代中期出现的新算法,有很多不同的计算公式,其中常用的秩1拟牛顿法是布岁依登法,其计算公式为: 犷十‘=护一A石丫(犷)量为w二铲+n。另外,要求x0在解x,附近较难达到。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条