1) implicit difference equation
隐式差分方程
1.
It changes a coefficient matrix of implicit difference equation into a specific block matrix, and gives complete computation formulas of back substitution.
本文给出一种线性变换,将隐式差分方程的系数矩阵转换成特定的分块矩阵,推导出了完整的回代计算公式,可以更灵活地构造计算方法,并为子结构法提供了理论证明。
2.
The focal point is to construct a new embedding overlapped iterative algorithm for solving one-dimensional implicit difference equations.
主要构造了求解一维隐式差分方程的四点嵌套迭代并行算法 ,并证明了它的收敛性 。
2) hidden form differential equation
隐格式差分方程
1.
Then a hidden form differential equation is gotten.
在数值计算中 ,应用部分线性法处理非线性非齐次热传导方程 ,得到相应的隐格式差分方程 ,再用追赶法求解隐格式差分方程 ,得出绝热边界条件下的温度的时间和空间分布 ,从而得出激光退火的再结晶厚度。
3) implicit difference systems
隐式差分方程组
1.
For solving implicit difference systems of Sine Gordon nonlinear hyperbolic partialdifferential equation,the method of recursive decoupling is presented and discussed.
用递推去耦法解SineGordon非线性双曲型偏微分方程的隐式差分方程组。
4) difference equation
差分方程式
5) implicit partial differential equations
隐式偏微分方程
1.
The Dirichlet problem of implicit partial differential equations;
一类隐式偏微分方程的Dirichlet问题
6) implicit differential equation
隐式微分方程
1.
Then an existence and unique theorem of solution for implicit differential equations without continuous condition in a Banach space are got.
改善和利用Banach空间中方向Lipschitz条件,得到Banach空间中不具备连续条件的隐式微分方程解的存在性和唯一性定理,并介绍一种Banach压缩映象逼近于一般不动点的新的含误差迭代。
2.
Then got an exitence and unique theorem of solution for implicit differential equations without continuous condition in a Banach space.
推广并利用Banach空间中方向Lipschitz条件 ,证明了一类不具连续条件的隐式微分方程的解的存在唯一
3.
By means of the iterative method,we study the theorem of the existence and uniqueness of local solutions of first order implicit differential equation with intial value problem.
本文用迭代法证明了一阶隐式微分方程初值问题局部解的存在唯一性定理 。
补充资料:微分方程的差分方程逼近
微分方程的差分方程逼近
approximation of a differential equation by difference equations
微分方程的差分方程通近【app拟。mati.ofa山价犯n-ti习闪姗柱.by山血魂.理equa西姗;即即肠。砚田朋.朋巾卜碑四.别吸.。印冲.旧e朋,pa3I.ecTll目M] 微分方程用关于未知函数在某种网格上的值的代数方程组的逼近,当网格的参数(网络、步长)趋于零时可使得逼近更加精确. 设L(Lu可)是某个微分算子,几(L声。=几,。。任叭,人“凡)是某个有限差分算子(见徽分算子的差分算子通近(aPProximation of a dilferential operator by dif-feren沈。perators”.如果算子L、关于解u逼近算子L,其阶为p,即如果 }}Lh[u]*I}汽=o(hp),那么有限差分式L声、二0(o任凡)称为关于解“对微分方程Lu=O的P阶逼近. 构造有限差分方程L声*=0关于解u逼近微分方程Lu=0的最简单例子是将Lu的表达式中每个导数用相应的有限差分来代替. 例如,方程 _子“.,、血._,_八_一n Lu三书舟+P(x)于+q(x)u=U ~“一dxZr‘~产dxl‘’可用有限差分方程 L‘“‘三生理二丛吐丛二+ h‘ U~丰I一U,_I_ +尸(x们厂竺二兹巴几十,(x功)u朋一o作二阶精度逼近,其中网格几。和几;由点x.“。h组成(m是一整数),“.是函数u*在点x.的值.又,方程 au aZu L“三共牛一斗冬二0, --一ar ax,可用关于光滑解的两种不同的差分近似来逼近: _.月+1_”月气.月上.” 一门、“nt4用“用十l‘“阴l“用一I八 于九‘(撇式格式(exPlie,}seheme))和! “几’l一嗽试,‘l}一翔二,曰衅,‘从 拭’价二一一-一—一了一--一一几,(隐式格式(一mf)liczt scheme)),其中网格D*。和D*:由点(x。,甲=(川入,似)组成,:二rhZ,r二常数,巾和n是整数,。二是函数翻、在网格点(x,,t。)的值.存在这样的有限差分算子L,它对微分算子L的逼近,仅关于方程L。一0的解。特别好,而关于其他函数则差一些.例如,算一子L*L*U。三兴,·卜·夸卫一尹{刁内队引〔其中汀二·。州一随甲‘气))关f任意的光滑函数。(*)是算 广L- d仪 L“一…一甲〔戈,“)Z(工) 办的一阶逼近(_关于八)、而关于方程大u=O的解却是二阶逼近(假定函数:,充分光滑)在利用有限差分方程与。。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条