1) Hamiltonian cycle decomposition
哈密顿圈分解
2) Decomposition
[英][,di:kɔmpə'ziʃən] [美][,dikɑmpə'zɪʃən]
哈密顿分解
1.
On the Hamiltonian Circuits and Hamiltonian.Decomposition of■×■×…×■;
关于直积n_1×n_2×…×n_k的哈密顿圈及哈密顿分解(英文)
3) Hamiltonian cycles
哈密顿圈
1.
We will present eight sufficient conditions for the existence of hamiltonian cycles in A1,r-free graphs by studying the essential independent sets in a graph and the independent sets in its partially square graph.
本文借助于对图的本质独立集和图的部分平方图的独立集的研究,对无K1,r图中哈密顿圈的存在性给出了八个充分条件。
4) Hamilton cycle
哈密顿圈
1.
Chapter 1 is intended as a firstintroduction to basic concepts and terminations of graphs, together with the backgroundon Hamilton cycle of graphs.
这篇论文分为两部分,分别介绍了有关图中的哈密顿圈和图的列表线性荫度的一些研究成果。
2.
Time dependent traveling salesman problem(TDTSP)is an extension of the traveling salesman problem(TSP),in which the travel time or cost between two nodes depends on not only the distance between the nodes,but also the time of day or the node position in the Hamilton cycle.
在该问题中,任意两节点间的旅行时间(成本)不仅取决于节点间的距离,还依赖于一天中具体时段或节点在哈密顿圈中所处的具体位置。
5) Hamiltonian cycle
哈密顿圈
1.
For any n-dimensional(n≥3) folded hypercube with at most 2n-3 faulty edges in which each vertex is incident with at least two fault-free edges,it is proved that there exists a fault-free Hamiltonian cycle.
证明了在至多具有2n-3条故障边的n维(n≥3)折叠超立方体网络中,如果每个顶点至少与两条非故障边相邻,则存在一个不含故障边的哈密顿圈。
2.
As consequences, we obtain the degree conditions for a graph with a Hamiltonian cycle C to have a [a ,b] - factor Fsuch that E(C)(?)E(F
作为推论,我们得到具有哈密顿圈C的图有一个[a,b]-因子F使得E(C)(?)E(F)的一个度条件。
3.
If one network contains Hamiltonian cycles (Hamiltonian paths) and cycles of variable lengths, then it can effectively simulate the algorithms designed based on rings and linear arrays.
若一个网络含有哈密顿圈(哈密顿路)及不同长度的圈,则可以有效模拟在环或线性阵列上设计的许多算法。
6) Hamiltonian cycle
哈密尔顿圈
1.
An implicit degree condition for hamiltonian cycles in k-connected graphs;
k-连通图中存在哈密尔顿圈的一个隐度条件
2.
An implicit degree condition for Hamiltonian cycles in k-connected claw-free graphs;
k-连通无爪图中存在哈密尔顿圈的一个隐度条件
3.
We will provide some formulas for calculating the number of all distinct hamiltonian cycles in some simple graphs , we will also discuss upper (resp.
给出了计算简单图中哈密尔顿圈个数的几个公式,并对简单图中哈密尔顿圈个数的上下界进行了讨论。