1) the best Hamilton Circle
最佳哈密尔顿圈
1.
The paper utilizes the matrix turning to realize that using the principle of one by one revision of two sides to obtain the best Hamilton Circle.
利用矩阵翻转实现二边逐次修正法求最佳哈密尔顿圈(H圈)。
2) Hamiltonian cycle
哈密尔顿圈
1.
An implicit degree condition for hamiltonian cycles in k-connected graphs;
k-连通图中存在哈密尔顿圈的一个隐度条件
2.
An implicit degree condition for Hamiltonian cycles in k-connected claw-free graphs;
k-连通无爪图中存在哈密尔顿圈的一个隐度条件
3.
We will provide some formulas for calculating the number of all distinct hamiltonian cycles in some simple graphs , we will also discuss upper (resp.
给出了计算简单图中哈密尔顿圈个数的几个公式,并对简单图中哈密尔顿圈个数的上下界进行了讨论。
3) Hamilton cycle
哈密尔顿圈
1.
According to the analysis of the solution to Knight s Tour Problem given by Euler and the knowledge of Hamilton path and Hamilton cycle,we obtain that the solution denotes a Hamilton cycle in the defined bigraph.
通过分析欧拉所给出Knight’s Tour Problem的解法,结合哈密尔顿路和哈密尔顿圈的相关知识,得出其解法对应着二部图中的一条哈密尔顿圈。
4) Hamiltonian cycles
哈密顿圈
1.
We will present eight sufficient conditions for the existence of hamiltonian cycles in A1,r-free graphs by studying the essential independent sets in a graph and the independent sets in its partially square graph.
本文借助于对图的本质独立集和图的部分平方图的独立集的研究,对无K1,r图中哈密顿圈的存在性给出了八个充分条件。
5) Hamilton cycle
哈密顿圈
1.
Chapter 1 is intended as a firstintroduction to basic concepts and terminations of graphs, together with the backgroundon Hamilton cycle of graphs.
这篇论文分为两部分,分别介绍了有关图中的哈密顿圈和图的列表线性荫度的一些研究成果。
2.
Time dependent traveling salesman problem(TDTSP)is an extension of the traveling salesman problem(TSP),in which the travel time or cost between two nodes depends on not only the distance between the nodes,but also the time of day or the node position in the Hamilton cycle.
在该问题中,任意两节点间的旅行时间(成本)不仅取决于节点间的距离,还依赖于一天中具体时段或节点在哈密顿圈中所处的具体位置。
6) Hamiltonian cycle
哈密顿圈
1.
For any n-dimensional(n≥3) folded hypercube with at most 2n-3 faulty edges in which each vertex is incident with at least two fault-free edges,it is proved that there exists a fault-free Hamiltonian cycle.
证明了在至多具有2n-3条故障边的n维(n≥3)折叠超立方体网络中,如果每个顶点至少与两条非故障边相邻,则存在一个不含故障边的哈密顿圈。
2.
As consequences, we obtain the degree conditions for a graph with a Hamiltonian cycle C to have a [a ,b] - factor Fsuch that E(C)(?)E(F
作为推论,我们得到具有哈密顿圈C的图有一个[a,b]-因子F使得E(C)(?)E(F)的一个度条件。
3.
If one network contains Hamiltonian cycles (Hamiltonian paths) and cycles of variable lengths, then it can effectively simulate the algorithms designed based on rings and linear arrays.
若一个网络含有哈密顿圈(哈密顿路)及不同长度的圈,则可以有效模拟在环或线性阵列上设计的许多算法。
补充资料:法尔顿
分子式:C9H4Cl3NO2S
分子量:296.580
CAS号:133-07-3
性质:白色结晶,熔点177℃。微溶于热的苯,四氯化碳,不溶于水。在中性和酸性条件下稳定,遇高温或碱性物质易水解。
制备方法:由邻苯二甲酰亚胺与三氯硫氯甲烷反应而得。先将5%的氢氧化钠溶液放入缩合锅内,搅拌冷却至-2℃,加入邻苯二甲酰亚胺,使其成为钠盐。在维持反应温度不高于10℃的情况下,滴加三氯硫氯甲烷。当反应物pH达8-9时出料过滤,干燥,即得成品,收率75%-79%。
用途:灭菌丹为有机硫杀菌剂,主要用于防治粮食作物蔬菜,果树等,多种病害,且对植物有刺激生长作用。便如可防治稻瘟病,水稻纹枯病,麦类锈病,赤霉病,油菜霜霉病,花生叶斑病,马铃薯晚疫病,蕃茄早疫病,烟草炭疽病,苹果炭疽病等。
分子量:296.580
CAS号:133-07-3
性质:白色结晶,熔点177℃。微溶于热的苯,四氯化碳,不溶于水。在中性和酸性条件下稳定,遇高温或碱性物质易水解。
制备方法:由邻苯二甲酰亚胺与三氯硫氯甲烷反应而得。先将5%的氢氧化钠溶液放入缩合锅内,搅拌冷却至-2℃,加入邻苯二甲酰亚胺,使其成为钠盐。在维持反应温度不高于10℃的情况下,滴加三氯硫氯甲烷。当反应物pH达8-9时出料过滤,干燥,即得成品,收率75%-79%。
用途:灭菌丹为有机硫杀菌剂,主要用于防治粮食作物蔬菜,果树等,多种病害,且对植物有刺激生长作用。便如可防治稻瘟病,水稻纹枯病,麦类锈病,赤霉病,油菜霜霉病,花生叶斑病,马铃薯晚疫病,蕃茄早疫病,烟草炭疽病,苹果炭疽病等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条