1) D-semicompact set
D-紧集
2) D-compact set
D-半紧集
3) D-paracomparct
D-仿紧
4) compact set
紧集
1.
Strongly compact set was studied by means of strongly connected set.
利用强连通来研究强紧集。
2.
This paper shows that a set in foe vector-valued sequence space BMC(X) is a relatively sequentially compact set if and only if it is an uniformly convergent set and its each coordinate project set is relatively sequentially compact, and shows another characterization of relatively sequentially compact sets in BMC(X) in case the locally convex space X does not contain a copy of c
利用局部凸空间理论,讨论了矢值序列空间BMC(X)中的相对序列紧集的性质,给出了其特征刻划,即BMC(X)中的子集是相对序列紧集,当且仅当它是一致收敛集及其每个坐标射影集是相对序列紧集。
3.
Aim To study the existence of the extreme points of a compact set in linear topological space.
目的研究线性拓扑空间中紧集端点存在性问题。
5) compact sets
紧集
1.
It is proved that the topological space consisting of compact sets of the n-dimensional Euclidean space is not compact and has no Hausdorff metric.
证明由欧氏空间的紧集所组成的拓扑空间不是紧拓扑空间,且在这种空间上没有豪斯道夫度量,当这些紧集取自某个固定的有界集时,所构成的空间是紧空间,且有豪斯道夫度量。
2.
StoneWeierstrass theorem was used to prove that GFHM can approximate any real continuous functions on a compact sets.
提出一种广义模糊双曲正切模糊模型(GFHM),此模型可以看做是模糊双曲正切模型的扩展·采用广义变量的双曲正切函数和的形式表达了模糊化、模糊推理和反模糊化的运算过程·并采用Stone Weierstrass定理证明了此模型可以逼近定义在紧集上的任意连续实函数,具有全局逼近性,可以用于复杂系统的建模
3.
In this paper, weakly compact sets and compact sets in inductive limits are investigated.
本文研究了诱导极限中的弱集与紧集。
6) compact
[英][kəm'pækt] [美][kəm'pækt]
紧集
1.
and when X is compact,in this paper we extended the result of Mercer theorem to the situation that μ is a Borel measure and X is not compact.
由于Mercer定理只对为Lebesgus测度及X为紧集时成立 ,因此Mercer定理的推广对再生核空间的研究具有重要意义。
2.
The uniqueness in simultaneous approximation to some compact sets in Banach space is gave using strict convex.
利用 Banach空间的严格凸性 ,研究了 Banach空间中有限个互不相交紧集同时逼近的惟一性 。
补充资料:逼近紧集
逼近紧集
approximately-compact set
逼近紧集{aPpro%im班ly一~p叭set;aun即枕“~皿。“。MI翻既rl《吧M”仪服。cr即} 具有逼近紧性(approximate。)mpactness)的凳:合、任何逼近紧He6L批B集七的度量射影都是连续的空间L。(0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条