说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 随机级数
1)  Random series
随机级数
1.
In this paper,we study the properties of the random series sum from n=1 to ∞ ±un.
对Rademacher级数sum from n=1 to ∞±un的性质进行了研究,首先将sum from n=1 to ∞±un的相关结果进行了推广,对于更为一般的随机级数sum from n=1 to ∞ξ_nu_n确定了其有限和的上确界与级数之间的具有相互限制的数量关系,然后,通过其数量关系将Rademacher级数的重要性质作了推广,通过研究发现:级数sum from n=1 to ∞ξ_nu_n具有Rademacher级数同样的确界定理。
2.
On the basis of the discussion of the growing of series of Taylor, the necessary and sufficient condition, )0(+?rr, of increasing series can be generalized one by one to random series, making it more universal.
在Taylor级数增长性讨论的基础上,将增长级为)0(+?rr的充要条件,一一推广到随机级数上,使其更具有一般性。
3.
By Hlder inequality, Minkowski inequality and other inequality, We study the covergence of random series and get two theorems of convergence which are generalizations of two theorems of J P Kahane.
运用Holder不等式,Minkow ski不等式和其它不等式,研究了随机级数的敛散性,给出了随机级数敛散的两个一般性定理,推广了J-P。
2)  random Taylor series
随机Taylor级数
1.
In this paper,the growth and of the random Taylor series in the plane are studied,and under certain conditions,comes the important results:the order of growth on a radius is the same as the plane a.
本文研究了全平面上的随机Taylor级数的增长性和收敛性,得出在一定条件下该级数沿任意半径上增长级与单位圆内的增长级相同。
2.
In this paper,it study the convergence and growth of the random taylor series in the unit ciricle.
研究了单位圆内的随机Taylor级数的增长性和收敛性,认为沿任意半径上增长级与单位圆内增长级相同。
3.
In this paper,the growth order of the finite order for non-equally distributed random Taylor series in unit circle is studied.
非同分布的有限级随机Taylor级数,它所确定的随机解析函数在单位圆内沿任一条半径的增长级几乎必然与相应的Taylor级数的增长级相同。
3)  random dirichlet series
随机Dirichlet级数
1.
Growth of random Dirichlet series of order zero;
零级随机Dirichlet级数的增长性
2.
The growth of random Dirichlet series on the horizontal lines;
随机Dirichlet级数在水平直线上的增长性
3.
The growth of random Dirichlet series;
随机Dirichlet级数的增长性
4)  random power series
随机幂级数
1.
In this paper,we study the growth of random power series whose coefficients norms are pairwise NQD sequences.
本文研究了系数的模为两两NQD序列的B-值随机幂级数的增长性。
2.
In this paper,we study little α-Bloch spaces and random power series ∑α≥0εαaαzα in the unit ball,and give certain sufficient condition for ∑α≥0εαaαzα to belong to little α-Bloch spaces.
讨论了单位球上小α-Bloch空间与随机幂级数∑α≥0εαaαzα,得到了随机幂级数∑α≥0εαaαzα属于小α-Bloch空间的一个充分条件。
3.
We discuss complex function spaces and random power series fω(z),and give sufficient conditions for an analytic function belonging to Besov spaces Bp.
Anderson较为系统的研究了Bloch空间和随机幂级数fω(z),得到了fω(z)几乎必然地属于Bloch空间的充分但非必要条件。
5)  power series with random coefficients
随机系数幂级数
6)  bi-random Taylor series
双随机Taylor级数
1.
The order of growth and convergence of the bi-random Taylor series are studied at certain conditions.
研究两类双随机Taylor级数在满足一定条件下的收敛性,增长性之间的关系,得出了在一定条件下,两类双随机Taylor级数有几乎相同的收敛性和增长级。
补充资料:随机数和伪随机数


随机数和伪随机数
random and pseudo-randan numbers

随机数和伪随机数【喇间佣1 al川牌”山一喇闭..m.山娜;cJI了,a如曰e”nce,口oc月卿成.以叹“c月a】 数亡。(特别,二进制数:。),其顺序出现,满足某种统计正则性(见概率论(probability Uleory)).人们是这样区别随机数(mndomn切mbe比)和伪随机数(PSeudo一mn由mn切mbe岛)的,前者由随机的装置来生成,而后者是用算术算法构造的.总是假设(出于较好或较差的理由)所得(或所构造)的序列具有频率性质,这些性质对于具有分布函数F(z)的某随机变量心独立实现的一个序列来说是“典型的”;因此人们称作根据规律F(习分布的(独立的)随机数.最经常使用的例子为:在区间【O,l]上均匀分布的随机数亡。,尸(亡。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条