1) reinforced regular matrix
强正则矩阵
2) regular matrix
正则矩阵
1.
Firstly the TPS is introduced into the theory of Semi-parametric regression,and then the regular matrix R is deduced.
提出了一种受多维变量影响的解决系统误差的半参数估计的薄板样条法,分析了其正则矩阵R,以某一重力异常数据处理算例验证了其正确性与可行性。
2.
Making use of Beasley s Lemma and permanent we obtain the row rank, column rank and Schein rank are identical for a regular matrix over a commutative semiring and the necessary and sufficient conditions for invertibility of matrices over an incline.
利用Beasley的引理以及不变式,获得了交换半环上正则矩阵的行秩、列秩与Schein秩三者相等,以及坡上矩阵可逆的充要条件。
3) regularizer
正则化矩阵
1.
One of the crucial steps is choosing an appropriate regularizer in processing GPS systematic errors based on the semi-parametric model.
基于半参数模型的GPS系统误差处理的关键之一是选择合适的正则化矩阵。
2.
Two new regularizers are employed to separate systematical errors in GPS baselines.
采用了两个新的正则化矩阵来分离高精度GPS基线向量处理中的系统误差,一是利用时间序列法选择的正则化矩阵;二是应用平稳随机过程的自协方差函数从双差观测值中提取的正则化矩阵。
3.
On the one hand,the ill condition of the normal equation was weakened by proper selection of a reasonable regularizer based on TIKHONOV regularization principle and much precision float ambiguities were obtained.
提出了只利用少数历元的GPS单频相位数据快速定位的新方法,主要从两方面考虑:一方面基于TIKHONOV正则化原理,通过构造合理正则化矩阵来减弱法方程的病态性,得到较准确的模糊度浮动解及其相应的均方误差阵;另一方面采用改进的白化滤波方法固定模糊度。
4) regular matrix pair
正则矩阵对
5) regular matrix pencil
正则矩阵束
1.
For any X∈Qn×m,∧=diag(λ1,…,λm)∈Rm×m,the general solution expressions of regular matrix pencil(A,B)which satisfy AX=BX∧ or XHBX=Im,AX=BX∧ were presented by using singular value decomposition,spectral decomposition and QR decomposition.
对于任意给定的X∈Qn×m,∧=diag(λ1,…,λm)∈Rm×m,利用奇异值分解、谱分解及QR分解分别给出了满足AX=BX∧,及XHBX=Im,AX=BX∧,的正则矩阵束(A,B)的通解表达式。
6) regular(o,1) matrix
正则(0.1)矩阵
补充资料:得强则生
得强则生
得强则生 如虚弱转为强健有力,则虽病而预后良好。如头不能举、腰不能转、膝不能屈伸、肢不能久立等衰惫之症,渐转为有力,即谓“得强”。《素问·脉要精微论》:“五脏者,身之强也……得强则生,失强则死。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条