1) Interval regular matrix
正则区间矩阵
2) regular matrix
正则矩阵
1.
Firstly the TPS is introduced into the theory of Semi-parametric regression,and then the regular matrix R is deduced.
提出了一种受多维变量影响的解决系统误差的半参数估计的薄板样条法,分析了其正则矩阵R,以某一重力异常数据处理算例验证了其正确性与可行性。
2.
Making use of Beasley s Lemma and permanent we obtain the row rank, column rank and Schein rank are identical for a regular matrix over a commutative semiring and the necessary and sufficient conditions for invertibility of matrices over an incline.
利用Beasley的引理以及不变式,获得了交换半环上正则矩阵的行秩、列秩与Schein秩三者相等,以及坡上矩阵可逆的充要条件。
3) interval matrix
区间矩阵
1.
Robust lower guaranteed cost fault tolerant control for interval matrix systems;
区间矩阵系统的保低成本鲁棒容错控制
2.
The planar magnetic levitation system was a nonlinear uncertain system,the interval matrix minimum upper bound methods was proposed to design robust control.
利用平面磁悬浮实现精密加工用工作台的定位子系统,建立的平面磁悬浮系统数学模型具有非线性和结构不确定性,提出区间矩阵最小上界方法设计鲁棒控制器。
3.
Designed state feedback controller with gain is also interval matrix.
设计的状态反馈控制器,其增益也是区间矩阵。
4) interval matrices
区间矩阵
1.
Further,by using the technique of matrix eigenvalues boundary,some simple and applicable algebraic criteria of the stability,the instability and the mixed stability for the interval matrices and discrete dynamic systems have been gained.
进一步利用矩阵特征值界的估计,获得了区间矩阵及离散动态系统稳定、不稳定和混合稳定的一些简单实用的判据,并通过实例说明结果的有效性。
2.
Considering that the network-induced delay is a constant,which is less than one sampling period,Lyapunov Function,linear matrix inequality(LMI) and interval matrices technique are used to design the local optimal controller gain for state feedback network control systems.
假定延时恒定且小于1个采样周期,采用Lyapunov函数、线性矩阵不等式(LMI)以及区间矩阵的概念,对状态反馈回路网络化的控制系统控制器增益进行设计,以寻求某个局部最优控制器增益,使网络化控制系统渐近稳定并同时使该控制器增益可变区间达到最大。
5) regularizer
正则化矩阵
1.
One of the crucial steps is choosing an appropriate regularizer in processing GPS systematic errors based on the semi-parametric model.
基于半参数模型的GPS系统误差处理的关键之一是选择合适的正则化矩阵。
2.
Two new regularizers are employed to separate systematical errors in GPS baselines.
采用了两个新的正则化矩阵来分离高精度GPS基线向量处理中的系统误差,一是利用时间序列法选择的正则化矩阵;二是应用平稳随机过程的自协方差函数从双差观测值中提取的正则化矩阵。
3.
On the one hand,the ill condition of the normal equation was weakened by proper selection of a reasonable regularizer based on TIKHONOV regularization principle and much precision float ambiguities were obtained.
提出了只利用少数历元的GPS单频相位数据快速定位的新方法,主要从两方面考虑:一方面基于TIKHONOV正则化原理,通过构造合理正则化矩阵来减弱法方程的病态性,得到较准确的模糊度浮动解及其相应的均方误差阵;另一方面采用改进的白化滤波方法固定模糊度。
6) reinforced regular matrix
强正则矩阵
补充资料:凡事豫则立,不豫则废
1.谓做任何事情,事先谋虑准备就会成功,否则就要失败。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条