1) nonlinear Fredholm integral equation
非线性Fredholm积分方程
1.
Wavelet Galerkin method for numerical solution of nonlinear Fredholm integral equations Ⅱ;
解第二类非线性Fredholm积分方程的小波Galerkin方法(英文)
2) nonlinear Fredholm type integral equation
非线性Fredholm型积分方程
1.
Under suitable conditions, we obtain the existence of multiple solutions for a class of nonlinear Fredholm type integral equations by using the topological degree in Banach space.
本文在全空间上,利用拓扑度在适当的条件下证明了非线性Fredholm型积分方程存在多个解。
3) linear Fredholm integral equations of the second kind
第二类线性Fredholm积分方程
1.
In this paper,we discuss the iteration algorithm for linear Fredholm integral equations of the second kind.
讨论第二类线性Fredholm积分方程Galerkin解的迭代,在Long给出的迭代算法的基础上,提出一种简化的迭代算法,并保留其迭代解的精度。
4) Fredholm integral equation
Fredholm积分方程
1.
Utilizing Muki method,the second kind of Fredholm integral equation describing the interaction between a pile and the half space is obtained.
根据Biot固结理论,采用Laplace和Hankel变换方法得到了半空间饱和土体内受垂直载荷作用下的变换域内基本解,再根据虚拟桩法,得出了单桩的第二类Fredholm积分方程,最后通过对积分方程的数值求解得出了在圆形载荷作用下,单桩桩侧的负摩擦力以及桩的孔压消散变化的情况。
2.
The second kind of Fredholm integral equation for the pile was establis.
利用半空间饱和土的基本解和自由波场解及桩、土间变形协调条件,建立了桩土共同作用的第二类Fredholm积分方程。
3.
Utilizing Muki method,the second kind of Fredholm integral equation describing the dynamic interaction between a pile and the half space is obtained.
再根据虚拟桩法,得出了移动载荷作用下桩基的第二类Fredholm积分方程。
5) Fredholm integral equations
Fredholm积分方程
1.
An interpolation-based adaptive solution method for Fredholm integral equations of the second kind;
第二类Fredholm积分方程的一个基于插值的自适应解法(英文)
2.
In this thesis, we present a fast self-adaptive algorithm for Fredholm integral equations of the second kind with weakly singular kernels.
本文考虑核函数有弱奇性的第二类Fredholm积分方程的自适应快速数值解法,即事先给定数值解的精度,设计算法确定相关的参数使得数值解满足精度要求。
6) Fredholm integral-differential equations
Fredholm积分微分方程
1.
Numerical solution of Fredholm integral-differential equations by using Haar wavelet
Fredholm积分微分方程的Haar小波数值解(英文)
补充资料:非线性积分方程
非线性积分方程
-linear integral equation
非线性积分方程[朋一血臼rin魄间闰.。佣;业皿He一uoe朋砚rpa月‘Hoe冲姗eHHe」 非线性地包含未知函数的积分方程(in哑间闪业-tion)、下面引述在各种应用问题的研究中经常遇到的非线性积分方程的基本类,它们的理论在一定程度上已有相当好的发展. 一个重要的例子是为.coH方程(Urysohn闪Ua-山n) ,(:)一、丁、:x,s,,(、):过:,x。。,(l) O这里O是一个有限维Euclid空间中的闭有界集,K〔x,:,t1是一个给定的函数,称为核,它是对x,s‘。,一田
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条