2) Computer and Chip Technology
计算机与芯片技术
3) single chip technology
单片机技术
1.
A set of web long-distance administration to the greenhouse monitor system based on single chip technology was put forward.
提出了一套web远程管理基于单片机技术的温室监控系统;同时介绍了系统总体拓扑结构,通过c语言接口程序和asp程序共享数据库,以较小的成本实现了温室监控数据的网络访问。
5) single-chip computer technology
单片机技术
1.
To change it,advanced single-chip computer technology,programmable logic CMOS chips(FPGA) and better performance CPU are applied.
为改变传统移频自动闭塞系统存在技术落后、信息量少、可靠性差,不能满足现代运输生产的发展需求状况,应用先进的单片机技术,可编程逻辑芯片(FPGA)和高性能CPU,通过逻辑结构设计和时序控制,实现了移频自动闭塞设备的集成化、通用化,大幅度提高了列车运行的可靠性,并为实现机车信号主体化创造了条件。
6) single chip computer
单片计算机
1.
The Application of Single Chip Computer in the Determining of Maize Stalk Strength;
单片计算机在玉米茎秆强度测定中应用
2.
Based on the nearly linear control rule of heart rate and contraction phase/expansion phase, the intelligent experimental artificial heart controller equipment was constructed, using 8096 single chip computer as the system kernel and considering the body temperature and humidity factors.
按照心率 ,收缩期 /扩张期近似线性的控制规律 ,考虑了体温、体表湿度的影响因素 ,采用 80 96单片计算机为核心的智能型人工心脏控制器实验装置已被组成。
3.
This paper discusses the working principle of boiler water processing based on a single chip computer system.
叙述了用单片计算机控制锅炉软化水处理设备的工作过程 。
补充资料:计算机技术
计算机领域中所运用的技术方法和技术手段。计算机技术具有明显的综合特性,它与电子工程、应用物理、机械工程、现代通信技术和数学等紧密结合,发展很快。第一台通用电子计算机 ENIAC就是以当时雷达脉冲技术、核物理电子计数技术、通信技术等为基础的。电子技术,特别是微电子技术的发展,对计算机技术产生重大影响,二者相互渗透,密切结合。应用物理方面的成就,为计算机技术的发展提供了条件:真空电子技术、磁记录技术、光学和激光技术、超导技术、光导纤维技术、热敏和光敏技术等,均在计算机中得到广泛应用。机械工程技术,尤其是精密机械及其工艺和计量技术,是计算机外部设备的技术支柱。随着计算机技术和通信技术各自的进步,以及社会对于将计算机结成网络以实现资源共享的要求日益增长,计算机技术与通信技术也已紧密地结合起来,将成为社会的强大物质技术基础。离散数学、算法论、语言理论、控制论、信息论、自动机论等,为计算机技术的发展提供了重要的理论基础。计算机技术在许多学科和工业技术的基础上产生和发展,又在几乎所有科学技术和国民经济领域中得到广泛应用。
基本内容 计算机技术的内容非常广泛,可粗分为计算机系统技术、计算机器件技术、计算机部件技术和计算机组装技术等几个方面。
计算机系统技术 计算机作为一个完整系统所运用的技术。主要有系统结构技术、系统管理技术、系统维护技术和系统应用技术等。
①系统结构技术:它的作用是使计算机系统获得良好的解题效率和合理的性能价格比。电子器件的进步,微程序设计和固体工程技术的进步,虚拟存储器技术以及操作系统和程序语言等方面的发展,均对计算机系统结构技术产生重大影响。它已成为计算机硬件、固件、软件紧密结合,并涉及电气工程、微电子工程和计算机科学理论等多学科的技术。现代计算机的系统结构技术主要有两个方面:一为从程序设计者所见的系统结构,它是系统的概念性结构与功能,关系到软件设计的特性;其二为从硬件设计者所见的系统结构,实际上是计算机的组成或实现,主要着眼于性能价格比的合理化。但50年代以来,程序设计者所见的系统结构变化不大,传统计算机的硬件组成与高级语言之间的严重脱节,给软件的可靠性、源程序编译效率,以及系统的解题效率等方面带来不利的影响,这是计算机系统结构技术需要解决的重要课题。以提高系统运算速度为主要目的而发展起来的并行处理技术,是70年代以来系统组成技术的一个重要努力方向(见并行处理计算机系统)。70年代出现的数据流计算机系统结构思想,把传统计算机的指令控制流控制方法改变为数据控制流的控制方法。从而有可能自动免除运算相关性的障碍,达到高度平行的目的。由于器件价格大幅度下降,为某种特殊用途专门设计的系统,可以显著提高性能价格比,如数据库计算机,图像处理计算机等。
②系统管理技术:计算机系统管理自动化是由操作系统实现的。操作系统的基本目的在于最有效地利用计算机的软件、硬件资源,以提高机器的吞吐能力、解题时效,便利操作使用,改善系统的可靠性,降低算题费用等。操作系统的基本功能,是对计算机系统的各种资源以至用户程序施行有效的管理、调度和指挥,主要为作业管理、文件管理、数据管理、处理器管理、输入输出管理、存储空间管理、人-机通信管理、终端网络管理、系统故障管理、系统再组合以及对其他软件的管理等。此外还负责对诸用户的数据和程序实施保护和保密,以及收费计算等。操作系统技术正向提高通用性、可扩展性、可移植性及工作效率、降低辅助时间等方面改进。
③系统维护技术:计算机系统实现自动维护和诊断的技术。实施维护诊断自动化的主要软件为功能检查程序和自动诊断程序。功能检查程序针对计算机系统各种部件各自的全部微观功能,以严格的数据图形或动作重试进行考查测试并比较其结果的正误,确定部件工作是否正常。自动诊断根据部件的具体逻辑,以特定的算法生成大量的测试数据和故障字典,利用诊断机或其他特设硬件作为"硬核",对故障部件有关的测试路径进行布数启动,并回收测试结果。对有故障者查询故障字典以确定故障部位。自动诊断目前尚只能解决单个坏死故障。由于受到电路本身和测试算法等的限制,诊断的覆盖面一般在90%左右,故障定位范围约在1~3个插件之内(见特征分析仪)。
④系统应用技术:计算机系统的应用十分广泛。程序设计自动化和软件工程技术是与应用有普遍关系的两个方面。
程序设计自动化,即用计算机自动设计程序,是使计算机得以推广的必要条件。早期的计算机靠人工以机器指令编写程序,费时费力,容易出错,阅读和调试修改均十分困难。50年代初期开始使用的汇编语言,与机器指令一一对应以记忆码和符号地址替代机器指令的操作码和地址码,再通过翻译器产生机器指令,有效地改善了程序设计的条件,虽然它是低级语言,但因可人工编写出高质量的程序而仍保有其生命力。50年代中期出现的高级程序设计语言,可根据课题算法的规律与特点,定义严格的语言和描述方法,使设计者可以用语言形式编制出课题的源程序,然后通过编译程序,自动编出以机器指令形式表达的目的程序,大大提高了程序设计的劳动生产率。高级程序设计语言已多达数百种,其中主要者有BASIC、FORTRAN、ALGOL、COBOL、PASCAL等。由于语言繁多又互不相通,程序移植困难,造成很大浪费。因此,人们对创造统一语言的问题相当重视,美国ADA语言就是一例。接近自然语言的算法语言也在探索之中。
软件生产工程化对计算机技术的发展具有重大意义。软件生产方式比较落后,以人工为主,自动化程度较差。设计、修改、维护费用昂贵,产品错误率较高,以致发生所谓"软件危机"。因此,在60年代末提出了"软件工程",即将软件生产视为一种工程或工业,使软件生产采取与硬件相类似的形式,创立软件设计、调试、维护、生产组织管理等的科学方法,制定软件标准,研制软件生产的工具等。软件工程的主要内容包括软件开发的方法论和软件开发的支援系统。方法论研究程序设计的原理、原则和技术,借以生产出价格合理、可靠和易读的程序。支援系统则主要对软件生产过程各阶段提出支持工具,以提高软件生产的效率与质量。软件工程已受到很大重视并获得较普遍的推广。
计算机器件技术 电子器件是计算机系统的物质基础,计算机复杂逻辑的最基层线路为"与门"、"或门"和"反相器"。由此组成的高一层线路有"组合逻辑"和"时序逻辑"两类。这些逻辑由电子器件来实现,通常以电子器件在技术上的变革作为计算机划代的标志。计算机器件技术,从50年代的真空电子器件到80年代的超大规模集成电路,经历了几个重大发展阶段,使机器组装密度提高约4个数量级,速度约提高 5~6个数量级,可靠性提高约4个数量级(以器件失效率为比较单位),功耗降低约3~4个数量级(以单个"门"为比较单位),价格降低约4~5个数量级(以单个"门"为比较单位)。器件技术的进步大大提高了计算机系统的性能价格比。
计算机部件技术 计算机系统是由数量和品种繁多的部件组成的。各种部件技术内容十分丰富,主要有运算与控制技术、信息存储技术和信息输入输出技术等。
①运算与控制技术:计算机的运算和逻辑功能主要是由中央处理器、主存储器、通道或 I/O处理器以及各种外部设备控制器部件实现的。中央处理器处于核心地位。运算算法的研究成果对加速四则运算,特别是乘除运算有重要作用,随着器件价格的降低,从逻辑方法上大大缩短进位与移位的时间。指令重叠、指令并行、流水线作业以及超高速缓冲存储器等技术的应用,可提高中央处理器的运算速度。微程序技术的应用,使原来比较杂乱和难以更动的随机控制逻辑变得灵活和规整,它把程序设计的概念运用于机器指令的实现过程,是控制逻辑设计方法上的一大改进,但因受到速度的限制,多用于中、小型计算机、通道和外部设备部件控制器中。早期计算机的各种控制,均集中于处理器,使系统效率很低。多道程序和分时系统技术的产生和各种存储器和输入输出部件在功能和技术上的发展,使计算机系统内部信息的管理方法与传输成为重要问题,计算机的控制从集中式走向分布式,出现了存储器控制技术与通道、外部设备部件控制技术等。
②信息存储技术:存储技术使计算机能将极其大量的数据和程序存放于系统之中,以实现高速处理。由于存储手段在容量、速度、价格三者之间存在尖锐矛盾,存储器不得不采取分级的体系,形成存储器的层次结构,自上至下可分为超高速缓冲存储器、高速主存储器(又称内存储器)和大容量外存储器等。主存储器是存储体系的核心,直接参与处理器的内部操作,因此它应具有与处理器相适应的工作速度和足够大的容量。50年代以来虽出现多种基于不同物理原理的存储方法,但均未获得理想的结果。50年代中期,铁氧体磁心存储器问世,沿用达20年之久,直到70年代中期,MOS存储器技术兴起后才逐步被淘汰。MOS存储器在速度、价格、功耗、可靠性及工艺性能等方面均有很大优越性,是主存储器比较理想的手段。主存储器的工作速度,一直未能跟上处理器,一般慢5~10倍。为充分发挥处理器潜力,出现了超高速缓冲存储器。超高速缓冲存储器通常以与处理器同类的双极型器件构成,使二者速度相匹配,但由于价格较高,容量一般只有主存储器的几百分之一。计算机巨量的数据,存储于速度较慢价格较低的外存储器中,外存储器主要有磁盘机和磁带机。存储器的层次结构相对缓和了速度、容量、价格三者之间的矛盾,但给用户带来存储空间调度的困难。为此,一般以硬件自动调度缓存空间,使之透明于用户;以虚拟存储方法(见虚拟存储器),在操作系统软件的支持下,实施主存与外存之间的自动调度。
③信息输入输出技术:输入输出设备是计算机送入数据和程序、送出处理结果的手段。输入的基本方法是以穿孔卡片或纸带为载体,经卡片或纸带输入机将数据和程序送入计算机,70年代初期出现的键控软盘数据输入方法(即数据输入站)已逐渐普及。将文字、数据的印刷(或手写)体直接读入计算机的光文字阅读机已经实现,语音图像直接输入计算机的技术也已取得一定成果。在输出方面,最普通的是建立在击打技术基础上的各类打印机,但速度受到机械运动的限制。非击打技术的输出设备能显著提高速度,主要有将电压直接加在电介质涂覆纸张以取得静电潜像的静电式打印机;靠激光在光导鼓上扫描而形成静电潜像的激光静电式打印机;利用喷墨雾点带电荷后受电极偏转而形成文字的喷墨式打印机等。作为轻便输出手段,则以利用热敏纸张遇热变色原理的热敏打印机比较流行。人-机对话输出多采用以显像管进行图像文字显示的终端设备。计算机的输入输出技术正向智能化发展。
计算机组装技术 组装技术同计算机系统的可靠性、维修调试的方便性、生产工艺性和信息传递的延迟程度有密切的关系。计算机电子器件的可靠性随着环境温度和湿度的升高而下降,尘埃的积聚可能造成插件或底板的短路或断路,因此制冷和空调是组装技术需要解决的重要问题。常用的方法有:将液态氟里昂引入插件冷却片的直接制冷法;用氟里昂使水冷却,再将冷水引入插件冷却片的水冷法;用氟里昂使空气冷却,再将冷空气送入机仓的强制风冷法等。前两者工艺结构较为复杂,故多采用风冷。组装技术需要解决的另一个问题是提高组装密度。计算机器件进入亚纳秒级后,几厘米长的导线所产生的信号延迟已足以影响机器的正常工作,使组装密度问题更加突出。计算机电子器件的变革,对组装技术产生极大影响,组装技术的进步始终与计算机的换代相协调,不断向小型、微型化发展。在电子管时期,一个"门"即是一个插件,以焊钉、导线钎焊而成。晶体管使组装密度提高一个数量级,每一个插件可包含若干个"门",组装采用单面或双面印制板。集成电路将过去的插件吸收到器件内部,同时采用多层印制的插件板与底板,以及绕接连线工艺,大大提高了组装密度。大规模和超大规模集成电路门阵列的应用,使组装实现微型化,典型的方法是将集成电路的裸芯片焊接在多达30余层的陶瓷片上,构成模块,然后将模块焊接于十余层的印刷底板上。
发展趋势 计算机技术面临着一系列新的重大变革。诺伊曼体制的简单硬件与专门逻辑已不能适应软件日趋复杂、课题日益繁杂庞大的趋势,要求创造服从于软件需要和课题自然逻辑的新体制。并行、联想、专用功能化以及硬件、固件、软件相复合,是新体制的重要实现方法。计算机将由信息处理、数据处理过渡到知识处理,知识库将取代数据库。自然语言、模式、图像、手写体等进行人-机会话将是输入输出的主要形式,使人-机关系达到高级的程度。砷化镓器件将取代硅器件。
基本内容 计算机技术的内容非常广泛,可粗分为计算机系统技术、计算机器件技术、计算机部件技术和计算机组装技术等几个方面。
计算机系统技术 计算机作为一个完整系统所运用的技术。主要有系统结构技术、系统管理技术、系统维护技术和系统应用技术等。
①系统结构技术:它的作用是使计算机系统获得良好的解题效率和合理的性能价格比。电子器件的进步,微程序设计和固体工程技术的进步,虚拟存储器技术以及操作系统和程序语言等方面的发展,均对计算机系统结构技术产生重大影响。它已成为计算机硬件、固件、软件紧密结合,并涉及电气工程、微电子工程和计算机科学理论等多学科的技术。现代计算机的系统结构技术主要有两个方面:一为从程序设计者所见的系统结构,它是系统的概念性结构与功能,关系到软件设计的特性;其二为从硬件设计者所见的系统结构,实际上是计算机的组成或实现,主要着眼于性能价格比的合理化。但50年代以来,程序设计者所见的系统结构变化不大,传统计算机的硬件组成与高级语言之间的严重脱节,给软件的可靠性、源程序编译效率,以及系统的解题效率等方面带来不利的影响,这是计算机系统结构技术需要解决的重要课题。以提高系统运算速度为主要目的而发展起来的并行处理技术,是70年代以来系统组成技术的一个重要努力方向(见并行处理计算机系统)。70年代出现的数据流计算机系统结构思想,把传统计算机的指令控制流控制方法改变为数据控制流的控制方法。从而有可能自动免除运算相关性的障碍,达到高度平行的目的。由于器件价格大幅度下降,为某种特殊用途专门设计的系统,可以显著提高性能价格比,如数据库计算机,图像处理计算机等。
②系统管理技术:计算机系统管理自动化是由操作系统实现的。操作系统的基本目的在于最有效地利用计算机的软件、硬件资源,以提高机器的吞吐能力、解题时效,便利操作使用,改善系统的可靠性,降低算题费用等。操作系统的基本功能,是对计算机系统的各种资源以至用户程序施行有效的管理、调度和指挥,主要为作业管理、文件管理、数据管理、处理器管理、输入输出管理、存储空间管理、人-机通信管理、终端网络管理、系统故障管理、系统再组合以及对其他软件的管理等。此外还负责对诸用户的数据和程序实施保护和保密,以及收费计算等。操作系统技术正向提高通用性、可扩展性、可移植性及工作效率、降低辅助时间等方面改进。
③系统维护技术:计算机系统实现自动维护和诊断的技术。实施维护诊断自动化的主要软件为功能检查程序和自动诊断程序。功能检查程序针对计算机系统各种部件各自的全部微观功能,以严格的数据图形或动作重试进行考查测试并比较其结果的正误,确定部件工作是否正常。自动诊断根据部件的具体逻辑,以特定的算法生成大量的测试数据和故障字典,利用诊断机或其他特设硬件作为"硬核",对故障部件有关的测试路径进行布数启动,并回收测试结果。对有故障者查询故障字典以确定故障部位。自动诊断目前尚只能解决单个坏死故障。由于受到电路本身和测试算法等的限制,诊断的覆盖面一般在90%左右,故障定位范围约在1~3个插件之内(见特征分析仪)。
④系统应用技术:计算机系统的应用十分广泛。程序设计自动化和软件工程技术是与应用有普遍关系的两个方面。
程序设计自动化,即用计算机自动设计程序,是使计算机得以推广的必要条件。早期的计算机靠人工以机器指令编写程序,费时费力,容易出错,阅读和调试修改均十分困难。50年代初期开始使用的汇编语言,与机器指令一一对应以记忆码和符号地址替代机器指令的操作码和地址码,再通过翻译器产生机器指令,有效地改善了程序设计的条件,虽然它是低级语言,但因可人工编写出高质量的程序而仍保有其生命力。50年代中期出现的高级程序设计语言,可根据课题算法的规律与特点,定义严格的语言和描述方法,使设计者可以用语言形式编制出课题的源程序,然后通过编译程序,自动编出以机器指令形式表达的目的程序,大大提高了程序设计的劳动生产率。高级程序设计语言已多达数百种,其中主要者有BASIC、FORTRAN、ALGOL、COBOL、PASCAL等。由于语言繁多又互不相通,程序移植困难,造成很大浪费。因此,人们对创造统一语言的问题相当重视,美国ADA语言就是一例。接近自然语言的算法语言也在探索之中。
软件生产工程化对计算机技术的发展具有重大意义。软件生产方式比较落后,以人工为主,自动化程度较差。设计、修改、维护费用昂贵,产品错误率较高,以致发生所谓"软件危机"。因此,在60年代末提出了"软件工程",即将软件生产视为一种工程或工业,使软件生产采取与硬件相类似的形式,创立软件设计、调试、维护、生产组织管理等的科学方法,制定软件标准,研制软件生产的工具等。软件工程的主要内容包括软件开发的方法论和软件开发的支援系统。方法论研究程序设计的原理、原则和技术,借以生产出价格合理、可靠和易读的程序。支援系统则主要对软件生产过程各阶段提出支持工具,以提高软件生产的效率与质量。软件工程已受到很大重视并获得较普遍的推广。
计算机器件技术 电子器件是计算机系统的物质基础,计算机复杂逻辑的最基层线路为"与门"、"或门"和"反相器"。由此组成的高一层线路有"组合逻辑"和"时序逻辑"两类。这些逻辑由电子器件来实现,通常以电子器件在技术上的变革作为计算机划代的标志。计算机器件技术,从50年代的真空电子器件到80年代的超大规模集成电路,经历了几个重大发展阶段,使机器组装密度提高约4个数量级,速度约提高 5~6个数量级,可靠性提高约4个数量级(以器件失效率为比较单位),功耗降低约3~4个数量级(以单个"门"为比较单位),价格降低约4~5个数量级(以单个"门"为比较单位)。器件技术的进步大大提高了计算机系统的性能价格比。
计算机部件技术 计算机系统是由数量和品种繁多的部件组成的。各种部件技术内容十分丰富,主要有运算与控制技术、信息存储技术和信息输入输出技术等。
①运算与控制技术:计算机的运算和逻辑功能主要是由中央处理器、主存储器、通道或 I/O处理器以及各种外部设备控制器部件实现的。中央处理器处于核心地位。运算算法的研究成果对加速四则运算,特别是乘除运算有重要作用,随着器件价格的降低,从逻辑方法上大大缩短进位与移位的时间。指令重叠、指令并行、流水线作业以及超高速缓冲存储器等技术的应用,可提高中央处理器的运算速度。微程序技术的应用,使原来比较杂乱和难以更动的随机控制逻辑变得灵活和规整,它把程序设计的概念运用于机器指令的实现过程,是控制逻辑设计方法上的一大改进,但因受到速度的限制,多用于中、小型计算机、通道和外部设备部件控制器中。早期计算机的各种控制,均集中于处理器,使系统效率很低。多道程序和分时系统技术的产生和各种存储器和输入输出部件在功能和技术上的发展,使计算机系统内部信息的管理方法与传输成为重要问题,计算机的控制从集中式走向分布式,出现了存储器控制技术与通道、外部设备部件控制技术等。
②信息存储技术:存储技术使计算机能将极其大量的数据和程序存放于系统之中,以实现高速处理。由于存储手段在容量、速度、价格三者之间存在尖锐矛盾,存储器不得不采取分级的体系,形成存储器的层次结构,自上至下可分为超高速缓冲存储器、高速主存储器(又称内存储器)和大容量外存储器等。主存储器是存储体系的核心,直接参与处理器的内部操作,因此它应具有与处理器相适应的工作速度和足够大的容量。50年代以来虽出现多种基于不同物理原理的存储方法,但均未获得理想的结果。50年代中期,铁氧体磁心存储器问世,沿用达20年之久,直到70年代中期,MOS存储器技术兴起后才逐步被淘汰。MOS存储器在速度、价格、功耗、可靠性及工艺性能等方面均有很大优越性,是主存储器比较理想的手段。主存储器的工作速度,一直未能跟上处理器,一般慢5~10倍。为充分发挥处理器潜力,出现了超高速缓冲存储器。超高速缓冲存储器通常以与处理器同类的双极型器件构成,使二者速度相匹配,但由于价格较高,容量一般只有主存储器的几百分之一。计算机巨量的数据,存储于速度较慢价格较低的外存储器中,外存储器主要有磁盘机和磁带机。存储器的层次结构相对缓和了速度、容量、价格三者之间的矛盾,但给用户带来存储空间调度的困难。为此,一般以硬件自动调度缓存空间,使之透明于用户;以虚拟存储方法(见虚拟存储器),在操作系统软件的支持下,实施主存与外存之间的自动调度。
③信息输入输出技术:输入输出设备是计算机送入数据和程序、送出处理结果的手段。输入的基本方法是以穿孔卡片或纸带为载体,经卡片或纸带输入机将数据和程序送入计算机,70年代初期出现的键控软盘数据输入方法(即数据输入站)已逐渐普及。将文字、数据的印刷(或手写)体直接读入计算机的光文字阅读机已经实现,语音图像直接输入计算机的技术也已取得一定成果。在输出方面,最普通的是建立在击打技术基础上的各类打印机,但速度受到机械运动的限制。非击打技术的输出设备能显著提高速度,主要有将电压直接加在电介质涂覆纸张以取得静电潜像的静电式打印机;靠激光在光导鼓上扫描而形成静电潜像的激光静电式打印机;利用喷墨雾点带电荷后受电极偏转而形成文字的喷墨式打印机等。作为轻便输出手段,则以利用热敏纸张遇热变色原理的热敏打印机比较流行。人-机对话输出多采用以显像管进行图像文字显示的终端设备。计算机的输入输出技术正向智能化发展。
计算机组装技术 组装技术同计算机系统的可靠性、维修调试的方便性、生产工艺性和信息传递的延迟程度有密切的关系。计算机电子器件的可靠性随着环境温度和湿度的升高而下降,尘埃的积聚可能造成插件或底板的短路或断路,因此制冷和空调是组装技术需要解决的重要问题。常用的方法有:将液态氟里昂引入插件冷却片的直接制冷法;用氟里昂使水冷却,再将冷水引入插件冷却片的水冷法;用氟里昂使空气冷却,再将冷空气送入机仓的强制风冷法等。前两者工艺结构较为复杂,故多采用风冷。组装技术需要解决的另一个问题是提高组装密度。计算机器件进入亚纳秒级后,几厘米长的导线所产生的信号延迟已足以影响机器的正常工作,使组装密度问题更加突出。计算机电子器件的变革,对组装技术产生极大影响,组装技术的进步始终与计算机的换代相协调,不断向小型、微型化发展。在电子管时期,一个"门"即是一个插件,以焊钉、导线钎焊而成。晶体管使组装密度提高一个数量级,每一个插件可包含若干个"门",组装采用单面或双面印制板。集成电路将过去的插件吸收到器件内部,同时采用多层印制的插件板与底板,以及绕接连线工艺,大大提高了组装密度。大规模和超大规模集成电路门阵列的应用,使组装实现微型化,典型的方法是将集成电路的裸芯片焊接在多达30余层的陶瓷片上,构成模块,然后将模块焊接于十余层的印刷底板上。
发展趋势 计算机技术面临着一系列新的重大变革。诺伊曼体制的简单硬件与专门逻辑已不能适应软件日趋复杂、课题日益繁杂庞大的趋势,要求创造服从于软件需要和课题自然逻辑的新体制。并行、联想、专用功能化以及硬件、固件、软件相复合,是新体制的重要实现方法。计算机将由信息处理、数据处理过渡到知识处理,知识库将取代数据库。自然语言、模式、图像、手写体等进行人-机会话将是输入输出的主要形式,使人-机关系达到高级的程度。砷化镓器件将取代硅器件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条