1) infinitely many non collision periodic solutions
无穷多非碰撞周期解
2) non-collision solution
非碰撞解
3) Multi-collisions
多期碰撞
4) Infinitely many solutions
无穷多解
1.
By means of the variational approach,in a condition weaker than(AR) the existence of infinitely many solutions of fourth-order elliptic equation is discussed.
在比(AR)条件更弱的一类超线性条件之下,利用变分方法讨论了一类超线性四阶椭圆方程的无穷多解的存在性。
2.
The aim of this paper is to discuss the infinitely many solutions of a class of p-biharmonic-like equations on a bounded smooth domain of RN,where 2p>N,and the nonlinearity may not be odd symmetric.
讨论了RN中有界光滑区域上的一类类p-双调和方程的无穷多解问题,其中2p>N,非线性项不必具有奇对称性。
5) multiple solutions
无穷多解
1.
In this paper,we considered the multiple solutions of the following p-Biharmonic-Like problem with 0-Dirichlet boundary value in a bounded domain with smooth boundary:△(a(△u|)△u|△u) = f (x,u), where f (x,u) is a nonlinear odd term.
考虑了类P-双调和方程△((a△up)△up-2△u)=f(x,u)的Dirichlet零边值问题的无穷多解问题,这里的非线性项是奇的,通过验证所定义的泛函满足Cerami条件,从而运用喷泉定理,得到了无穷多个大能量解的存在性。
2.
By considering the following p-Laplace problem of 0-DDirichlet boundary value in a bounded domain of Ω=(0,1)~N:-div(|Du|~(p-2)Du)=g(x,u)+f(x), the existence of multiple solutions in W~_(1,p)_0(Ω) is shown under some assumptions in this paper.
在有界区域Ω=(0,1)N中讨论含非对称形式的p laplace方程-div(|Du|p-2Du)=g(x,u)+f(x)的Dirichlet零边值问题,给出了在一定条件下无穷多解的存在性。
3.
In this paper, the recent achievements of multiple solutions in semilinear ellipic problems and p-Laplacian problems are related.
在更一般的条件下用不同的方法获得了方程无穷多解的存在性结果。
6) quasi-periodic impact oscillator
拟周期碰撞振子
1.
In this thesis, we study the Lagrange stability of quasi-periodic impact oscillators.
本文讨论拟周期碰撞振子的Lagrangc稳定性。
补充资料:第二类非弹性碰撞
分子式:
CAS号:
性质:又称第二类碰撞。与第一类非弹性碰撞不同,它的粒子体系在碰撞前后的总动能变化为 (式中mi,mj和vi,vj分别为粒子在碰撞前、后的质量和速度)。这种非弹性碰撞可使被碰撞的粒子发生动能和内能间的转化。在发射光谱定量分析中,被激发的原子或离子因第二类碰撞失去部分能量,因而可影响谱线强度。
CAS号:
性质:又称第二类碰撞。与第一类非弹性碰撞不同,它的粒子体系在碰撞前后的总动能变化为 (式中mi,mj和vi,vj分别为粒子在碰撞前、后的质量和速度)。这种非弹性碰撞可使被碰撞的粒子发生动能和内能间的转化。在发射光谱定量分析中,被激发的原子或离子因第二类碰撞失去部分能量,因而可影响谱线强度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条