1) rational gray number
有理灰数
2) gray rational number set
有理灰数集
3) bounded grey number
有界灰数
4) finite rational numbers
有限有理数
5) rational number
有理数
1.
Use division transformation,the rational number must be expressed by limited decimal or unlimited circulating decimal.
利用有理数对实数逼近的表示方式,给出黎曼函数处处不可导的一种证明,给出单位圆周上的有理点在单位圆上稠密的证明。
2.
On expressing any positive rational number as sum of different terms of a given subsequence of harmonic sequence,some particular cases are studies.
对于用调和数列的子列表示正有理数的问题,研究了一些特殊情况。
6) rational function
有理函数
1.
On the partial fraction expansion of rational functions;
关于有理函数的部分分式展开
2.
Application of derivative operation in rational function integral;
导数运算在有理函数积分中的应用
3.
Density and approximation rate of Müntz rational functions on infinite intervals.;
无界区间上Müntz有理函数的稠密性和逼近速度
补充资料:有理数
有理数 rational number 整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零3种数。由于任何一个整数或分数都可以化为十进循环小数,反之,每一个十进循环小数也能化为整数或分数,因此,有理数也可以定义为十进循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数的大小顺序的规定:如果a-b是正有理数,就称a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集不是稠密的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性,整数集没有这一特性,因为两个相邻的整数之间就没有其他的整数了。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条