1) shape invariance
形不变性
1.
he wave functions and energy eigenvalues for the ring shaped oscillator are obtained by using the ideas of supersymmetric quantum mechanics and shape invariance.
本文采用量子力学中的超对称性和形不变性讨论环形振子的波函数和能量本征值。
2.
This article shows that in spherical polar coordinates,the Hartmann potential has supersymmetry and shape invariance in the r dimension and in the θ dimension,and thus it obtains the energy eigenvalues and energy eigenfunctions of this potential.
证明了在球极坐标下,哈特曼势在维度r 和维度θ都具有超对称性和形不变性,从而求得此势的能量本征值和能量本征函数。
3.
This article salved energy eigenvalues and eigenfunction of Hartmann potential by using supersymmetry and shape invariance method in the Quantum Mechanics.
运用超对称性量子力学和形不变性的方法求解Hartmann势的能量本征值和本征函数。
2) form invariance
形式不变性
1.
Effects of mass variation on form invariance and conserved quantity of mechanical systems;
质量变化对力学系统形式不变性和守恒量的影响
2.
On the form invariance of differential equations of motion for generalized mechanical system in terms of quasi-coordinates;
准坐标下广义力学系统运动微分方程的形式不变性
3.
Noether symmetry and form invariance of the Chaplygin system;
Chaplygin系统的Noether对称性与形式不变性
3) shape invariance
形状不变性
1.
Starting from the operator factorization in Quantum Mechanics and combined with the shape invariance of superpotential, the supersymmetric operator method can be used to exactly solve the energies and wavefunctions of bound states in a one dimensional potential well, Scarf(Ⅱ) potential.
由量子力学算符的因式分解出发,结合超势的形状不变性,运用超对称算符方法严格求解了一维势阱Scarf(Ⅱ)势的束缚态能级和波函数,并讨论了其束缚态的存在性。
2.
The concepts of supersymmetry and shape invariance are introduced and the energy levels and wave function of moving ions in the potential fields of shape invariance can be obtained after the solution of Schrdinger equation has been found by algebric methods and shape invariance technique.
介绍了超对称性和形状不变性概念;运用形状不变性技术采用代数方法求解Schrdinger方程,得出了在形状不变势场中运动粒子的能级和波函
3.
The energy eigenvalues for Poschl-Teller 1 potential are calculated by using the shape invariance technique.
采用形状不变性技术,计算了Poschl—TellerⅠ势的能量本征值,得到的能谱公式跟采用因子化方法得到的严格解完全一致,得到的形状不变式表明,Poschl—TellerⅠ势是双参量平移型形状不变势。
4) conformal invariance
共形不变性
1.
Firstly,the definition of conformal invariance and determining equation for the Lagrange system are provided.
研究Lagrange系统Lie点变换下的共形不变性与守恒量,给出Lagrange系统的共形不变性定义和确定方程,讨论系统共形不变性与Lie对称性的关系,得到在无限小单参数点变换群作用下系统共形不变性同时是Lie对称性的充要条件,导出系统相应的守恒量,并给出应用算例。
2.
tarting from the conformal invariance of the singUlarity manifoldequation of the (1+1)-dimensional KdV equation, the (1+1)-dimensional sinh-Gordonequation was re-obtained.
首先利用1+1维KdV方程的奇性流形方程的共形不变性,重新给出了1+1维的sinh-Gordon万程。
3.
This means that conformal invariance is preserved in such cases.
在热力学极限下,单个Fermion能量与宇称算符的奇偶性无关,并证明了当临界参量构成可公度组态时,能谱具有塔状结构,因而在此情况下共形不变性被保持。
5) shapeslant invariance
形倾不变性
6) deformation inhomogeneity
变形不均匀性
补充资料:J形及L形密封
分子式:
CAS号:
性质:两种均为唇形橡胶密封,截面形状分别为J形和L形。多为纯橡胶制品,也有少数是夹布制品。根据使用条件,一般用天然橡胶或丁腈橡胶制造。结构较简单,摩擦力低,专用于气压或液压机械设备的活塞及活塞杆密封,工作压力在1MPa以下,如用于汽车和火车制动系统及离合器操纵系统中,起传递压力和密封的作用。
CAS号:
性质:两种均为唇形橡胶密封,截面形状分别为J形和L形。多为纯橡胶制品,也有少数是夹布制品。根据使用条件,一般用天然橡胶或丁腈橡胶制造。结构较简单,摩擦力低,专用于气压或液压机械设备的活塞及活塞杆密封,工作压力在1MPa以下,如用于汽车和火车制动系统及离合器操纵系统中,起传递压力和密封的作用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条