1) viscous shock layer

粘性激波层
1.
The chemical non equilibrium three dimensional viscous shock layer flows are calculated numerically.
本文通过引进主流贴体坐标 ,将粘性激波层概念推广到三维流场 ,得到了三维粘性激波层方程 ;应用空间推进与总体迭代相结合的求解方法 ,对三维化学非平衡粘性激波层流场进行了数值模
2.
In this paper, 11 species Air Model is used for calculating the chemical non equilibrium viscous shock layer flow over hyperboloids.
本文采用11组元化学模型对双曲体粘性激波层化学非平衡绕流流场进行了数值计算,给出了压力、温度,N+2、O+2、N+、O+和NO+摩尔浓度及e-数密度在驻点的分布,并与7组元、5组元的计算结果作了比较。
3.
The chemical non equilibrium viscous shock layer flows over a teflon ablative wall are calculated numerically.
本文对有泰氟隆烧蚀的化学非平衡粘性激波层流场进行了数值模拟。
2) viscous shock wave

粘性激波
1.
This paper considers the viscous shock wave problem a class of viscous conservation law systems.
考虑一类粘性守恒律方程粘性激波问题 ,证明了存在临界门槛 ,在门槛之上存在粘性激波 ,在门槛之下存在连续波前波 。
3) "sticky" fluctuation

"粘性"波动
1.
Aggregate Equilibrium Interval and the Problem of "Sticky" Fluctuation of Aggregate Supply;
总量均衡区间与总供给的“粘性”波动问题探析
2.
The existence of aggregate equilibrium interval results in a "sticky" fluctuation in aggregate supply,which induces various impacts on the operation of macro-economy and macroeconomic regulation.
总量均衡区间的存在,导致总供给具有了“粘性”波动的特性,这一特性将对宏观经济运行与调控产生重要影响,因而必须对之高度重视,并采取相应的方略以应对由此产生的诸多新问题、新挑战。
5) visco-elastic layer

粘弹性层
6) laminar viscous flow

粘性层流
1.
Aim To get the analytical for laminar viscous flow in the gap of two parallel rotating disks.
研究两平行旋转圆盘间隙内粘性层流的流动,求解解析解,方法通过分析两平行旋转圆盘间隙内粘性层流的流动特点,利用数量级比较的方法,对粘性流体运动方程(N-S方程)进行了简化,并进行积分以求得缝隙内粘性流场的解析解。
补充资料:激波层
高超声速流动中气流绕过物体时,在物体附近形成一道激波,通常把物体头部附近的激波和物面之间的区域称为激波层。在高超声速条件下,由于激波很靠近物面,激波层是薄的,所以也称薄激波层。利用激波层薄的特点,可对钝头物体的高超声速无粘绕流问题,从理论上进行简化处理。
由物面向外,激波层可细分为物面附近的边界层、粘性作用可以忽略的无粘性区以及激波区。当激波层内气体的高温效应可以不考虑时(例如激波层内气体的温度小于2000开时),激波区的厚度是分子平均自由程的几倍。如果来流气体不很稀薄,分子碰撞自由程很小,在连续介质范围内,激波区的厚度可以忽略,激波就成为一个物理量不连续变化的间断面。边界层的厚度和来流雷诺数成反比。如果雷诺数很大,边界层便很薄,激波层几乎变成无粘性区,边界层对无粘性区的影响可以忽略。如果雷诺数降低,边界层的厚度增加,无粘性区的厚度减小,边界层和无粘性区流动之间的相互影响就变得重要。如果雷诺数更低,边界层更厚,甚至整个激波层被粘性边界层所充满。因此,激波层又可分成无粘性激波层、粘性-无粘性干扰激波层和粘性激波层等。
在高超声速飞行体形状为钝头的情况下,在钝头附近,激波接近于正激波,其强度很大。如果来流马赫数很高,激波层内的气体温度很高,就会产生一系列高温效应,例如气体分子的振动自由度被激发,气体出现离解和电离等。在气体出现电离后,激波层内的气体就包含电子和离子,此时激波层就会象一个鞘层把物体包围住,这种激波层称为等离子体鞘。研究这种情形下的激波层流动,对再入大气层过程中的通讯具有重要意义。根据这种情况,激波层又可分成无高温效应激波层和有高温效应激波层。
无粘性激波层中气体的运动,可用完全气体和具有化学反应的混合气体的欧拉方程(见流体力学基本方程组)描述;粘性激波层内的运动可用相应的纳维-斯托克斯方程描述;至于粘性-无粘性干扰激波层,则需联合求解欧拉方程和高阶边界层方程,或者直接求解简化的纳维-斯托克斯方程。
由物面向外,激波层可细分为物面附近的边界层、粘性作用可以忽略的无粘性区以及激波区。当激波层内气体的高温效应可以不考虑时(例如激波层内气体的温度小于2000开时),激波区的厚度是分子平均自由程的几倍。如果来流气体不很稀薄,分子碰撞自由程很小,在连续介质范围内,激波区的厚度可以忽略,激波就成为一个物理量不连续变化的间断面。边界层的厚度和来流雷诺数成反比。如果雷诺数很大,边界层便很薄,激波层几乎变成无粘性区,边界层对无粘性区的影响可以忽略。如果雷诺数降低,边界层的厚度增加,无粘性区的厚度减小,边界层和无粘性区流动之间的相互影响就变得重要。如果雷诺数更低,边界层更厚,甚至整个激波层被粘性边界层所充满。因此,激波层又可分成无粘性激波层、粘性-无粘性干扰激波层和粘性激波层等。
在高超声速飞行体形状为钝头的情况下,在钝头附近,激波接近于正激波,其强度很大。如果来流马赫数很高,激波层内的气体温度很高,就会产生一系列高温效应,例如气体分子的振动自由度被激发,气体出现离解和电离等。在气体出现电离后,激波层内的气体就包含电子和离子,此时激波层就会象一个鞘层把物体包围住,这种激波层称为等离子体鞘。研究这种情形下的激波层流动,对再入大气层过程中的通讯具有重要意义。根据这种情况,激波层又可分成无高温效应激波层和有高温效应激波层。
无粘性激波层中气体的运动,可用完全气体和具有化学反应的混合气体的欧拉方程(见流体力学基本方程组)描述;粘性激波层内的运动可用相应的纳维-斯托克斯方程描述;至于粘性-无粘性干扰激波层,则需联合求解欧拉方程和高阶边界层方程,或者直接求解简化的纳维-斯托克斯方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条