说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 两种测度的一致最终有界性
1)  uniform ultimate boundedness in terms of two measures
两种测度的一致最终有界性
2)  uniform boundedness in terms of two measures
两种测度的一致有界性
3)  uniform ultimate boundedness
一致最终有界性
1.
In this paper, we discuss uniform boundedness and uniform ultimate boundedness of differential systems with infinite delay.
研究了非线性无穷时滞微分系统解的一致有界性和一致最终有界性。
2.
By using these theorems, one can assert the uniform stability, uniform asymptotic stability, uniform boundedness and uniform ultimate boundedness of the delay difference systems if the corresponding properties of the solution of the relevant ordinary difference equation are known.
利用这些定理,由无时滞差分方程的一致稳定性、一致渐近稳定性、一致有界性及一致最终有界性等性质可以判定有限时滞差分系统的相应的性质。
4)  uniformly ultimate boundedness
一致最终有界性
1.
in this paper, we first use a new method to obtain some new results concerningthe uniform boundedness, uniformly ultimate boundedness and extreme stability of solutionsof higher dimensional systems.
本文首先利用一种新方法讨论高维系统解的一致有界性,一致最终有界性及非常稳定性问题,然后将所获结果应用于高维系统周期解的存在性与唯一性的研究。
5)  uniformly ultimately bounded
一致最终有界
1.
Based on the UUB (uniformly ultimately bounded) theory and a quadratic Lyapunov function, this paper provides a methodology to analyze the influence of parameter uncertainties on transient stability under the classical model with uniform damping coefficients.
该文基于UUB(一致最终有界)定理,提出一种利用二次型的Lyapunov函数分析多机均匀阻尼经典模型中参数不确定性对暂态稳定影响的解析方法。
2.
To insure the system error is uniformly ultimately bounded (UUB), the update laws of the coarse/fine subnet are designed respectively.
为了确保系统误差一致最终有界收敛,分别设计了粗/细子网的权值更新律。
3.
Lyapunov function is chosen in order to verify the stability of observer,and it is proved that the observer error states are uniformly ultimately bounded.
采用Lyapunov函数作为稳定观测器的判别条件 ,使观测器在有外部干扰时具有一致最终有界的构造误差 。
6)  uniform ultimate boundedness
最终一致有界
1.
By using of the LMI and Lyapunov-Krosovskii functional,a memoryless adaptive state feedback controller is proposed,which can guarantee the closed-loop system is globally stable in the sense of uniform ultimate boundedness.
结合线性矩阵不等式和Lyapunov-Krasovskii型泛函设计出了一种无记忆自适应状态反馈控制器,并证明此控制器使得闭环系统最终一致有界;仿真例子说明了结论的有效性。
2.
The constructed controller was further shown to have the property of uniform ultimate boundedness (u.
另外对于n关节的机器人轨迹跟踪问题,设计了一种新型控制器能够保证系统的最终一致有界性(u。
3.
By using of the Lyapunov stability theory and Lyapunov-Krasovskii functional we propose a memoryless state feedback controller and prove the closed-loop system is globally stable in the sense of uniform ultimate boundedness.
基于Lyapunov稳定性理论和Lyapunov-K rasovsk ii型泛函设计出了一种无记忆的自适应状态反馈控制器,并证明了满足一定条件时,此控制器使得闭环系统最终一致有界。
补充资料:三种结界
【三种结界】
 (名数)一摄僧界,二摄衣界,三摄食界。摄僧界中又有三种:一、大界,一伽蓝地之外界为小极限,广者至十里乃至百里。佛使结此大界者,欲令为说戒等僧事时,一聚之僧尽和集,无一人乖隔故也。凡僧事之法,一界中,有一人不和集者,则其事不成就。夫无结界之法,阎浮提界僧众,不尽和集,不得举僧事,是何可者?以是佛陀方便,使于随处结构僧界,使同一界内之僧,得举和集之实,以作僧事。此所以结摄僧大界也。资持记上二之一曰:“僧界者,摄人以同处,令无别众罪。”二、戒场,僧中有要数四人乃至要二十人之法事,为恐僧疲极,佛听结之。戒场极小者,可容二十一人。三、小界,是亦恐困难事废法事而听结之,其界随临时僧之坐起而大小随之。世所谓结界地者,指此中之第一大界也。第二摄衣界。为令比丘离三衣之结界也,于此摄衣界内假令离三衣经宿,亦免离宿罪。资持记上二之一曰:“衣界者,摄衣属人,令无离宿罪。”第三摄食界。结界食物贮藏所,隔离比丘之住处,使比丘不犯宿食之罪者。资持记曰:“食界者,摄食以障僧,令无宿煮罪。”
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条