说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拉氏乘子
1)  Lagrange multiplier
拉氏乘子
1.
In this method,without depending upon small parameter,a trial function with possible unknowns is used as initial approximation,then a correction functional is constructed by means of a general Lagrange multiplier,which can be identified via variational theory.
本文提出了一种求解非线性方程的迭代算法 ,它不依赖于小参数 ,是先给方程一个带待定函数的试函数作为初始近似解 ,然后用拉氏乘子法构造一个迭代公式 (校正泛函 ) 。
2.
A concept of splitting factor (an arbitrary parameter) is introduced into Lagrange multiplier,enabling it to do what the traditional Lagrange multiplier could not do.
本文将笔者在1981年提出的分裂因子(任意参数)的概念引入拉氏乘子,称为带参数拉氏乘子法。
3.
In EFGM, in order to get a numerical solution for a partial differential equation, shape function is constructed by Moving Least Square (MLS), control equation is produced from the weak form of variational equation and Lagrange multipliers are used to satisfy essential boundary conditions.
它采用移动的最小二乘法构造形函数,从能量泛函的弱变分形式中得到控制方程,并用拉氏乘子满足本征边界条件,从而得到偏微分方程的数值解。
2)  Lagrange multiplier method
拉氏乘子
1.
The traditional approach(Lagrange multiplier method)might fail due to the variational crisis occurring during the derivation of generalized variational principles.
若应用传统的拉氏乘子法,由于会出现临界变分现象,不能得到本文的结果。
2.
To overcome this crisis, Chien suggested a method called the high order Lagrange multiplier method.
临界变分现象是拉氏乘子法的固有特性,钱伟长应用高阶拉氏乘子消除了临界变分现象。
3)  Lagrangian multiplier
拉氏乘子
1.
The constraint conditions of variation are eliminated by the method of identified Lagrangian multiplier and a generalized variational principle is established.
本文将钱伟长教授在文献[1]中提出的不可压缩粘性流的最大功率消耗原理进一步推广到本构方程为εij=τ/σ′ij的非牛顿流体流动问题,并采用识别的拉氏乘子法解除变分约束条件,导出其广义变分原理
2.
The constraint conditions of variation are eliminated by the method of identified Lagrangian multipliers and a generalized variational principle is estab-lished.
本文将钱伟长教授 ̄[1]的不可压缩粘性流的最大功率消耗原理推广到一类特殊的非牛顿流体─—广义牛顿流体的流动问题,并采用识别的拉氏乘子法来解除变分约束条件,导出其广义变分原理。
4)  Lagrange multiplier method
拉氏乘子法
1.
In using the Lagrange multiplier method to eliminate constraints of Hellinger-Reissner principle, the multipliers may vanish during the process of variation.
应用拉氏乘子法消除Hellinger-Reissner变分原理的约束关系时,在识别拉氏乘子的 过程中,会出现拉氏乘子为零的现象。
2.
The variational crises (such as, some of the Lagrangemultipliers vanish completely) are of its inherent character of Lagrange multiplier method.
详细综述了消除临界变分的各种方法:刘高联预处理拉氏乘子法、钱伟长高阶拉氏乘子法及作者提出的半反推法。
5)  Lagrange multiplier
拉氏乘子法
1.
In using the Lagrange multiplier method to eliminate the constraints imposed on conditional variational principles, the multipliers might vanish during the process of variation ( λ =0, where λ is a Lagange multiplier).
在应用拉氏乘子法消除泛函的约束时,往往会出现临界变分现象(拉氏乘子为零)。
6)  general Lagrange multiplier
广义拉氏乘子
补充资料:谁氏子
【诗文】:
非痴非狂谁氏子,去入王屋称道士。白头老母遮门啼,
挽断衫袖留不止。翠眉新妇年二十,载送还家哭穿市。
或云欲学吹凤笙,所慕灵妃媲萧史。又云时俗轻寻常,
力行险怪取贵仕。神仙虽然有传说,知者尽知其妄矣。
圣君贤相安可欺,乾死穷山竟何俟。呜呼余心诚岂弟,
愿往教诲究终始。罚一劝百政之经,不从而诛未晚耳。
谁其友亲能哀怜,写吾此诗持送似。



【注释】:



【出处】:
全唐诗:卷340-7
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条