1) Diagonalizable
可对角化
1.
The Ample and Essential Condition Making Matrices Diagonalizable;
矩阵可对角化的充分必要条件
2.
The Polynonomial of Diagonalizable Linear Transformation;
可对角化的线性变换的多项式
3.
A series of the necessary and sufficient conditions of the diagonalizable matrix isgiven.
给出了矩阵可对角化的几个充要条件,分别削弱了[1]、[2]中一个定理的条件,优化了矩阵的对角化理论,指出了求可对角化矩阵的特征向量的一条捷径。
2) diagonalizable solution
可对角化解
1.
The necessary and sufficient conditions are described for this quadratic matrix equation have diagonalizable solution by using dimension of eigenspace or eigenvector.
给出了二次矩阵方程AX2+BX+C=0的特征值和特征子空间的定义,然后运用其特征子空间的维数或特征向量刻画了该二次矩阵方程存在可对角化解的充要条件。
2.
Then we obtain the diagonalizable solutions and the structural solutions.
讨论了一元二次矩阵方程X2+AX+XB+C=0的解,分别得出可对角化解及一般解的构造性结果。
3) diagonalizability
可对角化性
4) positive diagonalization
可正对角化矩阵
5) diagonalization matrix
矩阵可对角化
1.
In this paper we give a necessary and sufficient condition on diagonalization matrix.
本文给出矩阵可对角化的一个充要条件。
6) Condiagonalizable
可共轭对角化
1.
The Condiagonalizable Matrices Class and Its Properties;
可共轭对角化类矩阵及其性质
补充资料:可对角化的代数群
可对角化的代数群
diagonalizable algebraic group
可对角化的代数群【曲创回迈城.妙触吹孚仙p;八IIa-rooa月。3oPyeMa二a月re6Pa一,ee二ao rPynoa」 与代数环面(碱罗braictor’us)的闭子群同构的仿射代数群G.于是,G同构于给定大小的全部对角矩阵的乘法群的闭子群.若G定义在域k上且同构定义在k上,则可对角化代数群G称为在k上分裂的(sPlit)或可分解的(deComPosable). 可对角化代数群G的任意闭子群H,以及G在任意有理同态毋下的象,是可对角化代数群.此外,若G在域k上定义且分裂,而职在k上定义,则H和甲(句两者都在此上定义且分裂. 可对角化代数群在k上分裂,当且仅当它的有理特征标群台的元素在k上是有理的,若台不含k上有理的非单位元,则可对角化代数群G称为在k上非迷向的(a~tIDpic).任一在域k上定义的可对角化代数群G在k的某有限可分扩张域上分裂. 可对角化代数群是连通的,当且仅当它是代数环面.G的连通性也等价干G无扭.对人上定义的任何可对角化代数群G,群G是无p扭的有限生成A吮1群,其中P是域k的特征. 域k上定义且分裂的可对角化代数群G是有限Abel群及某个在此上定义且分裂的代数环面的直积.任何连通的且定义在域人上的可对角化代数群G含有最大非迷向子环面Ga及在k上分裂的最大子环面GJ;对这些群有G二Ga乓,且Ga自玩是有限集. 若可对角化代数群G在域k上定义,且r是k的可分闭包的G司。is群,则G上可赋予r的连续作用.此外,若甲:G~H是可对角代数群之间的有理同态,且G,H和职都在k上定义,则同态场:斤~G是r等价(即r模的同态).这就得到可对角化k群及它们的k态射的范畴到无p扭的有r群连续作用的有限生成Abel群和它们的r等价同态的范畴间的逆变函子,它是这两个范畴间的等价.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条