1) rectangular frame convergece
矩边逼近
2) Matrix approximation
矩阵逼近
1.
Based on matrix optimal approximation and weighted residuals theory, the matrix approximation and the extremal algorithm for resolving inverse problems of vibration engineering are integrated with least squares problem under definition of norms in this paper.
根据矩阵最佳逼近与加权残值理论 ,把求解振动反问题时所使用的矩阵逼近法和极值化算法统一为不同范数定义下的最小二乘问题 ,这对部分振频和 /或振型给定情况下振动反问题的求解提供了一个有效工具。
2.
From the eigenequation and the orthogonality conditions a best matrix approximation technique for updated analytical model based on test identified modal parameters is presented in this paper.
本文从特征方程和模态正交条件出发,给出了一种应用模态参数识别结果修正理论模型的最佳矩阵逼近方法。
3.
For uncertain continuous system and uncertain discrete-time system with input contraints,the optimization problem with given expectation value of performance index is discussed,which can be transformed into the problem of matrix approximation with matrix inequalities contraints.
针对不确定连续系统和具有控制约束的不确定离散系统,讨论了具有给定性能指标期望值的最优控制问题,这一问题可转变为具有矩阵不等式约束的矩阵逼近问题,而且进一步把解决具有矩阵不等式约束的矩阵逼近问题转变成具有线性矩阵不等式约束的广义特征值最小化问题,并结合算例说明通过LMI工具箱中的求解器可求出系统的最优解。
3) approximation matrix
逼近矩阵
4) one-sided approximation
单边逼近
1.
In this paper a new kind of approximation method,called non-linear m-term one- sided approximation,is introduced by combining the non-linear best m-term approximation with the one-sided approximation.
结合最佳m项逼近和单边逼近的思想引进所谓最佳m项单边逼近的概念,给出由Fourier系数确定的光滑函数类通过三角函数系在L_p(1≤p≤∞)的最佳m-项单边逼近渐近估计以及m-项类贪婪单边逼近结果。
5) matrix Padé approximation
矩阵Padé逼近
1.
When all interpolation points approach zero,a matrix Padé approximation with chosen coefficients is constructed,whose coefficients can be obtained by the least square method.
当所有的插值结点都趋于零时,导出了系数可选择的矩阵Padé逼近,其中的系数可用非常有效的最小二乘法求得。
6) matrix Pade approximations
矩阵Pade逼近
补充资料:微分边值问题的差分边值问题逼近
微分边值问题的差分边值问题逼近
approximation of adifferentia) boundary value problem by difference boundary value problems
微分边值问题的差分边值问题通近{即proxlm浦训ofa山fferential肠扣nd即卿阁此pn由lemby山ffe悦n沈b侧n-da仔耐ue pn由lems;all即旧K。肠,au舰皿呻加脚.胆,日峨成峥ae侧甫,阴,加琳3“心犯川角! 关于未知函数在网格_[的值的有限(通常是代数的)方程组对微分方程及其边界条件的一种逼近.通过使差分间题的参数(网格步长)趋于零,这种逼近会越来越准确. 考虑微分边值问题L:、二0,lu!l二O的解“的川算,其中L“=0是微分方程Iu!二0是一组边界条件.u属于定义在边界为r的给定区域从上的函数所组成的线性赋范空间U设D、。是网格(llL微分算子的差分算子通近(approx,matlon of a ditTere;ltl;,1 op-erator by differe们优。详rators)),并设U*是rlJ定义价该网格上的函数。*所组成的线性赋范空间.设卜j、厂函数v在几;的点上的值表卜在打。中引进范数使得对任意的函数,;〔创,以手‘等式成盆: 恕伽训、·三{训‘现在用近似计算“在D*。中的点上的值表luJ的问题一/*{司、=0代替求解“的问题.这里了*【川。是一组关一)网格函数。*任U。的值的(作微分)方程 设。*是U、中的任意函数.令二。。、二叭片设小是线性赋范空间,对任意的叭6u*有势*。中,二称才*“*二0是对微分边值问题L“二0,l川,一0石其解空间_L的P阶有限差分逼近,若 {}了*lu奴{}。*二O(h尸)方程组J、“*=0的实际构造涉及分别构造它的两个子方程组IJ*u*=o和l、u*}。二0.对L*u儿=0,使用微分方程的差分方程通近(approximat,on。》f a dll化r‘:ntia}equation by differer,沈equations).附加方程I。,、、}:=(”利用边界条件l川。=0来构造. 对无论怎样选取的U、与中人的范数,上面所描述的逼近都无法保证差分问题的解u、收敛到准确解“(见{2]),即等式 {,砚}1 lul*一“六{}、;。成立. 保证收敛性的附加条件是稳定性(见{3!,{5!18]),有限差分间题必须具有这一性质.称有限差分间题了r八“、=0是稳定的,若存在正数占>oh。>0使得对任意毋*‘。*,}一甲*{}<。,h<权,方程一气:二甲*有唯一解:*已认,且此解满足不等式 1}:儿一u*}}:。“{}。、}{。,其中C是与h或右端扰动叭无关的常数,“、是无扰动问题一/*。=O的解‘如果褂于问题的解u存在同时差分问题气“、二O关于解“以p阶精度逼近微分问题,而且是稳定的,则差分问题具有同样阶的收敛性,即 }1[uL一吟}l叭=O(hp). 例如,问题 ,,、_au au L(“)三.举一拼=0,I>0.一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条