说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 极限过冷度
1)  subcooling lim
极限过冷度
1.
The liquid superheat limit and vapor subcooling limit in homogeneous nucleation are determined in the present paper by using density fluctuation theory of statistical thermodynamics.
应用统计热力学巨正则系综的密度涨落理论 ,提出了确定均质沸腾中液体极限过热度和均质凝结中蒸汽极限过冷度的方法。
2)  supercool limit
过冷极限
1.
Theoretical study on and prediction of the supercool limits of gases;
气体过冷极限的理论探讨及预测
3)  superheat limit
极限过热度
1.
The liquid superheat limit and critical radius of bubbles in homogeneous nucleateboiling are determined in the present paper by using density fluctuation theory of statistical theomodynamics.
利用统计热力学密度涨落理论确定了均质沸腾时液体的极限过热度及汽泡的临界半径。
2.
The result is that the theoretical superheat limit of the liquid is the temperature at the critical point.
本文将分子平均自由程的概念引入流体亚稳定状态和理论极限过热度的分析研究,根据分子平均自由程和流体表面张力等特性,分析了气泡生长与分子直径、表面张力的本质关系,得出了流体的理论极限过热温度为其临界温度的结论。
3.
The liquid superheat limit and vapor subcooling limit in homogeneous nucleation are determined in the present paper by using density fluctuation theory of statistical thermodynamics.
应用统计热力学巨正则系综的密度涨落理论 ,提出了确定均质沸腾中液体极限过热度和均质凝结中蒸汽极限过冷度的方法。
4)  limit of cooling temperature
极限冷却温度
5)  superheat limit temperature
过热极限温度
1.
The superheat limit temperatures of n-alkane-surfactant-water emulsion systems have been measured by using the liquid column method.
采用液滴注射法测量5种正烷烃(C6-C10)-表面活性剂-水制成乳状液的过热极限温度。
6)  refrigeration limit
制冷极限
补充资料:上极限和下极限


上极限和下极限
upper and lower limits

  上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条