1) amended trigonometric function method
修正的三角函数法
1.
So, with the help of Mathmetica and using the amended trigonometric function method as well as Wu elimination method, a group of exact and explicit solutions to KdV equation is obtained.
将非线性方程的解表示成修正的三角函数的有限级数 ,从而将非线性方程的求解问题转化为代数方程求解问题 ,借助 Mathematica软件 ,采用修正的三角函数法和吴文俊消元法 ,得到了 Kd V方程的多组显式精确解 。
2) direct trigonometric function
正三角函数
3) orthogonality of trigonometric function
三角函数的正交性
4) trigonometric function method
三角函数法
1.
With the aid of computer algebraic system " Maple" and using the trigonometric function method,the new exact and solitary wave solutions of the combined KdV equation φ t+ α φ φ x+ β φ 2φ x+ γ φ xxx=0 has been obtained.
文章借助计算机代数系统Maple,利用三角函数法,得到组合KdV方程tφ+αφxφ+βφ2xφ+γxφxx=0的显式精确解。
6) orthogonal trigonometric function basis
正交三角函数基
补充资料:反三角函数
反三角函数
inverse trigonometric finctions
反三角函数tiIV颐祀州浮.团班红允五.改如圈;。6p盯H“erp“ro.oMe印。,eeoe中”K双皿。1,反圆函数(~百比以叮允口币。斑) 三角函数(州即no住日的cfu“无ons)的反函数.六个基本三角函数对应六个反三角函数.它们是所谓反正弦、反余弦、反正切、反余切、反正割、反余割,并且分别记为A兀sinx,Are心x,A几tanx,A代田恤们x,为csecx,AI℃。艾沈℃x.函数A兀sin义和A戊姗x对于}xl簇1有定义(在实数范围内);A兀tanx和Arecotanx对于一切实数x有定义;A代secx和A兀~x对于}xl)1有定义;最后两个函数很少使用.另外一些记号是sin一’x,哪一’x,等等. 因为三角函数是周期的,所以它们的反函数是多值的(仃以ny绷目班沮).这些函数的单值分支(主支(少加烦palb口Ln比曰)记为毗sinx,眼峨x,·…也就是说,眼sinx是AIC sinx的主支,满足条件一7r/2簇眠sinx簇7r/2.类似地,昵哪x,arc枷x和毗田加叮x分别满足条件O城眼心x蕊二,一二/2蕊眼tanx毛二/2,0<眠印加叮x<“. 下图表示y=A优sinx,y二Al℃联x,y=A戊tanx,y=A儿cotanx的图形;主支由粗线标明. 宁少多 袱准 函数A戊sinx,…很容易由眼sinx,…来表示,例如二 Al℃sinx=(一l)月眼sinx+二n, A戊姗x=士娜哪x+2兀n,Al℃扭nx=arc tanx+兀”, A兀cotanx二arc cotanx+7tn, n=O,士1,·…反三角函数之间存在关系: “sinx+‘”x一合,一,““, 7T一’一 娥tan戈+娥cotanX一才,一的<戈<+呱因此,眼邸x和眼colallx在以后的公式中并不出现. 反三角函数是无限次可微的,并且在其定义域的任何内点的邻域中能够展开为级数.导数、积分和级数展开为: ‘二s血二丫二一里一一、(二恤:),-一共,、 、一’甲1一xZ’“‘l十x‘’ J二sin x dx一、二sinx+护厂了+C, 丁二tanx“x一二tanx一合In(‘+xZ)+c, 。I内,、二2月+. ‘s谊‘一‘+熙岸稀带六谕.,’戈’<‘, arctan二一于工二业立二2。·:二:l<1. n一0乙n州卜1 复变量的反三角函数定义为相应实函数到复平面的解析延拓. 反三角函数可以通过对数函数(fo砰币山面c丘mc.tion)来表示二 二s谊:=一ih( 12+打下百), 二朗:=一ih(z+护弈万), i,l+12 arctanz二一一in一. 乙1一迢么 i,12一1 arC仪】砚nZ=一,二~m— 21艺+l 幻.B.C期op曲撰【补注】tan一’x和co灿一’x的另一种记号分别是tg一’x和ctg一’x.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条