1) hot isothermal state
热态准等温
2) Semi-solid Isothermal Treatment
半固态等温热处理
1.
Semi-solid isothermal treatment is thought as a potential technology in the manufacturing non-dendritic structure alloy slurry, the research of this technology is helpful to rich the theory of semi-solid metal forming and accelerate the application of this technology.
半固态等温热处理作为一种比较有发展前途的非枝晶组织坯料制备方法,对其展开研究将有助于丰富半固态金属成形理论和加速该技术的工业化应用。
3) semi-solid isothermal heat treatment
半固态等温热处理
1.
Microstructural Evolution of ZA84 Magnesium Alloy During Semi-solid Isothermal Heat Treatment;
ZA84镁合金在半固态等温热处理过程中的组织演变
2.
Experimental method and parameters of liquidus forging are given in this paper to prepare the bellit for semi-solid process,and microstructure evolution of magnesium alloy ZK60-RE during semi-solid isothermal heat treatment is researched as well.
给出了液相线模锻法制备ZK60-RE镁合金半固态坯料的实验方法和工艺参数,并研究了该方法制备的ZK60-RE镁合金在半固态等温热处理过程中的微观组织演变。
3.
Microstructure and composition evolution of MB15 magnesium alloy were researched by means of quenched technology, optical and electronic microscopy analysis in order to study the non-dendritic structure of the MB15 alloy for semi-solid metal forming during semi-solid isothermal heat treatment.
结果表明:MB15镁合金在半固态等温热处理过程中能形成晶粒细小、晶粒粗化速度缓慢的球状组织,但其圆整程度低于AZ91D合金。
4) semi solid isothermal heat treatment
半固态等温热处理
1.
The structure evolution of AZ91D magnesium alloy and the modified AZ91D magnesium alloy during semi solid isothermal heat treatment was studied, and its transformation mechanism was also discussed.
研究了未变质处理和变质处理的AZ91D镁合金在半固态等温热处理过程中的组织演变 ,并对其组织演变机理进行了探讨。
5) quasi isothermal
准等温的
6) isothermal-heating
等温加热
1.
temperature,a decreased relatively resistivity(namely Δγ) calculating method was proposed based on experiment of testing the change of resistivity of the Cu-CrZr alloy in the isothermal-heating aging process.
通过测试Cu-Cr-Zr合金在等温加热过程中电阻率的变化,提出了一种计算相对电阻率减小值Δγ的方法,并以Δγ作为描述时效过程的参数,对该合金等温加热时效动力学进行了研究。
补充资料:准粒子态密度(densityofsinglequasi-particalstates)
准粒子态密度(densityofsinglequasi-particalstates)
在相空间单位体积单位能量间隔中的状态数称态密度。在BCS理论中的准粒子态密度为:
`N_s(E)=N(0)\frac{E}{sqrt{E^2-\Delta^2}},(E>0)`
式中E为粒子的元激发能量,N(0)为正常相的态密度。上式对大多数超导金属与单电子隧道实验结果相符。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条