1) Wigner Distribution
Wigner
1.
Repression of the Interference in the Wigner Distribution and the Algorithm;
Wigner分布干扰项抑制及其算法
2) Wigner spectrum
Wigner谱
3) wigner correction
wigner校正
4) Wigner Distribution
Wigner分布
1.
Wigner distribution s application on holographic computing;
Wigner分布变换在全息计算中的应用
2.
For multi-component signals,Wigner distribution(WD) is well energy-concentrated but holds cross-terms,while spectrogram,the magnitude-squared STFT,has no cross-terms but bad energy-concentration,thus a time-frequency representation based on geometric mean of WD and Spectrogram(GMWS),which is simple and easy to be realized,was introduced to integrate both advantages.
对于多分量信号,Wigner分布的时频能量集中但存在交叉项,而由短时傅立叶变换模的平方得到的谱图无交叉项但时频聚集性较差,因而引入Wigner分布与谱图几何平均这种思想简单且易于实现的时频表示综合了二者的优势。
3.
Wigner distribution is a common time-frequency representation.
Wigner分布是最为常用的一种时频分布。
5) Wigner-Eckart theorem
Wigner-Eckart定理
1.
Based on the commutation relations between the components of an irreducible tensor operator of rank k and the angular momentum operator, a simple derivation of the Wigner-Eckart theorem is presented with the aid of the properties of angular momentum operators and their eigenstates.
从不可约张量算符与角动量算符之间的对易关系出发,利用角动量算符和角动量本征态的有关性质,给出了Wigner-Eckart定理的一种简单证明方法。
6) WVD
Wigner-Ville分布
1.
Time-frequency distribution characteristics of Wigner-Ville distribution(WVD) and Choi-Williams distribution(CWD) are discussed,both of which are members of the Cohen s class.
分析了2种Cohen类时频分布Wigner-Ville分布(WVD)及Choi-Williams分布(CWD)的时频特性。
2.
Some typical methods of extracting the in-pulse features of radar signal such as wavelet transformation and WVD were compared.
通过对小波变换法、Wigner-Ville分布等典型雷达信号脉内特征提取方法优缺点的分析,提出了一种将小波变换法和Wigner-Ville分布提取的结果进行截断综合的综合提取算法,实现了雷达信号的脉内特征准确提取。
3.
The instantaneous frequency spectrum of the impulse radio signal is represented by HHT,and which is calibrate its fidelity compared with the best existing methods,the wavelet analysis and Wigner-Ville distribution(WVD).
通过HHT可以得到冲击无线电信号的时频谱,并与传统的小波时频谱和Wigner-Ville分布进行了比较。
补充资料:Wigner rule
分子式:
CAS号:
性质:又称维格纳法则。在处于激发态的原子或分子与另一个处于基态的原子或分子之间发生电子能量转移时,该体系的总自旋角动量(矢量)应当保持不变。
CAS号:
性质:又称维格纳法则。在处于激发态的原子或分子与另一个处于基态的原子或分子之间发生电子能量转移时,该体系的总自旋角动量(矢量)应当保持不变。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条