1) Bezier polynomials
Bezier多项式
2) the Bernstein-Bezier polynomial
Bernstein-Bezier多项式
1.
The degree elevation formula for the Bernstein-Bezier polynomial over rectangles is presented, and the limit approximating property of the coefficients (Farin Theorem) is proved.
本文给出了矩形域上Bernstein-Bezier多项式的一般升阶公式,并证明了它的升阶系数的极限逼近性质。
3) polynomials/chromatic polynomials
多项式/色多项式
4) lacunary polynomial
缺项多项式
1.
The necessary and sufficient conditions are obtained for the lacunary polynomials to be dense in C_α,where C_α is the weighted Banach space of complex continuous functions f(t) on R with f(t)exp{-α(t)} vanishing at infinity.
设函数α(t)在R上非负连续,Cα是R上满足lim|t|→∞f(t)e-α(t)=0的连续函数f(t)全体组成的Banach空间,得到了一个缺项多项式在Cα空间中稠密的充分必要条件。
5) multinomial
[英][,mʌlti'nəumiəl] [美][,mʌltɪ'nomɪəl]
多项的,多项式;多项式的
6) polynomial
[英][,pɔli'nəumiəl] [美][,pɑlɪ'nomɪəl]
多项式,多项的,多项式的
补充资料:多项式乘多项式法则
Image:1173836820929048.jpg
先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。