说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 口径积分
1)  aperture-integration
口径积分
1.
In this paper, the hybrid method of aperture-integration and surface-integration technique with three dimension ray tracking technique is presented.
提出了一种口径积分-表面积分和射线跟踪混合方法,分析了某大型雷达罩对 SSR线天线及单元方向图的影响,给出了带罩天线方向图中直射瓣和反射瓣的矢量合成的解法,数值计算结果与实验数据符合较好。
2)  aperture integration
口径积分
1.
By the surface aperture integration of the equivalent source on inner surface, the secondly-incidental fields upon the radome are obtained, then the secondly-incidental wave transfer through local plane of multi-layer dielectr.
提出了发射模式下,曲面口径积分/几何光学的混合分析方法。
3)  integrating the aperture field
口径场积分
1.
In this paper, complex ray theory and geometric optics as well as integrating the aperture field are presented for calculating the interior radar cross section(RCS) from and openended cavity with rectangular cross section.
本文用几何光学理论、口径场积分和复射线理论对一端开口、另一端短路的矩形腔体进行了雷达散射截面的分析计算。
4)  aperture integration-surface integration
口径积分-表面积分法
1.
The aperture integration-surface integration(AI-SI) method is a common numerical simulation method for the far-fields of the antenna-radome system.
口径积分-表面积分法是带罩天线远场电性能数值仿真的常用方法,针对该法分析电中大尺寸天线-罩系统远场电性能计算效率过低的问题,提出了基于等效源区域分解的并行口径积分-表面积分算法。
5)  AI/SAI-SI
口径/谱域积分-表面积分法
1.
By combining it with the surface integration(SI) technique,the aperture integration /spectrum area integration-surface integration(AI/SAI-SI) method is presented,to simulate the electromagnetic performance of three-dimension antenna-radome system.
结合表面积分技术,提出了口径/谱域积分-表面积分法,用于三维天线-罩系统电性能数值仿真。
6)  path integrals
路径积分
1.
Using the canonical transformation and the method of path integrals, the quantum wavefunction of the time-dependent RLC circuit after quantization is solved, and the quantum fluctuations of the charge and current are investigated.
应用正则化变换结合路径积分方法,求解了电感、电阻、电容随时间变化情况下的有源含时RLC回路的量子化波函数,并进一步研究了电路中电荷、电流的量子起伏。
2.
The mathematical structure and physical sense of Feynman s path integrals have been redefined,by using the theory of stochastic processes.
用随机过程的理论,重新解释了Feynman路径积分的数学结构与物理意义,而且改进了Feynman对“一个自由粒子的精确解的计算。
3.
Using the canonical transformation and the method of path integrals,the exact wavefunction of the time dependent damped harmonic oscillator is derived.
对与速度成正比和与速度平方成正比的阻尼变频谐振子 ,通过正则变换 ,采用路径积分方法 ,得出了阻尼变频谐振子的严格波函
补充资料:次大口径成品油管道(见大口径原油管道)


次大口径成品油管道(见大口径原油管道)
small big inch products pipeline

  次大口径成品油管道比m“,。彬duet、pipeline)见大。径原油管道。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条