说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> n级拟奇可微函数
1)  n-order quasi-odd differentiable function
n级拟奇可微函数
2)  quasidifferentiable functions
拟可微函数
1.
In the paper,a special class of quasidifferentiable functions-subsuper differentiable functions is introduced,which satisfies the conditions of the existence of high dimensional kernels,and the formula of kernels is deduced.
引入了一个特殊的拟可微函数类-次超可微函数,证明了其满足具有高维核的条件,并且推导出了高维核的计算公式。
2.
In this paper, the convexificator kernels of quasidifferentiable functions are introduced.
本文对拟可微函数定义了凸化核的概念,并对其具体结构做了进一步的研究, 给出了一般拟可微函数为次可微的一个充分条件。
3)  quasidifferentiable function
拟可微函数
1.
An algorithm for determining the Gteax differentiability for a class of quasidifferentiable functions whose quasidifferentials are convex hulls of finite number of points is presented.
对于拟微分为有限点集凸包的拟可微函数 ,给出了判别其在任一点处是否可微的一种算法 。
2.
Considiering the following indifferentiable optimization problemmin where arequasidifferentiable functions (in the sense of Demyanov and Rubinov)defined onRn and are locally Lipschitz defined on Rn.
考虑下述不可微优化问题:其中为Rn上的拟可微函数(在Demyanov和Rubinov意义下)上的局部Lipschitz函数。
3.
A characterization on quasidifferentiable functions is given this paper.
本文给出了拟可微函数的一个等价命题。
4)  n-th derived function
n阶可微函数
1.
A new inequality of Ostrowski type for n-th derived functions by upper and lower bounds of n-th derived functions as well as Cruiss inequality.
研究了一类n阶可微函数,利用其n阶导数上、下界以及Cruis不等式,给出了n阶可微函数Ostrowski型不等式,从而推广二阶可微函数Ostrowski型不等式。
5)  generalized quasi-differentiable functions
广义拟可微函数
1.
The theories of generalized quasi-differentiable functions (the extension of Farkas lemma) and the conclusions of semi-infinite programming are used to transform a class of two-level optimization programming to generalized quasi-differentiable optimization programming, and educe the KKT condition.
本文研究一类双层规划问题的KKT条件,利用广义拟可微函数的研究成果(广义Farkas引理)及关于一类半无限规划问题的研究将一类双层规划优化问题转化为广义拟可微问题来研究,并推导其问题的KKT条件及更一般形式的双层规划问题的KKT条件。
6)  n times continuously differentiable function
n次连续可微函数
补充资料:奇函数(奇jī)
设y=f(x)是定义在关于原点对称的区间上的函数,如果对于定义域中任意一个x,都有f(-x)=-f(x),那么函数y=f(x)称为奇函数。它的图像关于原点成中心对称。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条