说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Riccati稳态方程
1)  Riccati static equation
Riccati稳态方程
2)  state-dependent Riccati equation
状态Riccati方程
1.
Using improved state-dependent Riccati equation method,the state synchronization of unified chaotic systems is achieved.
利用改进的状态Riccati方程法,实现了统一混沌系统的状态同步控制。
3)  Riccati equations
Riccati方程组
1.
By using two extended Riccati equations and Mathematica software,the author obtains exact solutions to the Variable Coefficient Burgers Equation with forced term outside and Witham-Broer-Kaup equation,including many kinds of solitary-wave-like solutions,like periodical solutions and solitary wave solutions with variable speed,many of which are found for the first time.
借助两个推广形式的Riccati方程组和Mathematica软件,求出了具外力项变系数Burgers方程和Witham- Broer-Kaup方程的一些精确解,包括各种类孤立波解、类周期解和变速孤立波解,其中许多解是新的。
2.
By constructing one new Riccati equations and using the generalixed Riccati method,we simplified the form and enriched the general results.
通过构造新的Riccati方程组,推广了Riccati方法,使其具有简洁的形式,丰富和发展了已有的结果,借助Mathematica软件,进一步获得了KdV-Burgers方程的一些新的孤波解。
3.
By using two extended Riccati equations and Mathematica software,exact solutions Of(2+1)-dimensional Broer-kaup equations with variable coefficients are obtained.
基于齐次平衡原则和分离变量法的思想,通过两个推广的Riccati方程组和Mathematica软件,求出了变系数(2+1)维Broer-kaup方程的一些精确解,包括各种类孤立波解、类周期解,其中许多解是新的。
4)  Riccati equations
Riccati方程
1.
On General Solutions of A Class of Riccati Equations;
一类Riccati方程的通解的问题
2.
The existence of particular solutions for a class of Riccati equations is studied by means of variation of constants and initial integral methods.
利用常数变易法以及初等积分法研究了一类Riccati方程的特解存在性,结果推广了以前所知结果。
3.
This paper gives an estimate of upper bounds of the (n,1) order of meromorphic solutions of Riccati equations and another sort of typical differential equations and proves the conjecture of under some condition.
本文给出 Riccati方程及另外一类具有代表性微分方程的亚纯解 (n,1 )级的上界估计 ,在一定条件下确立了文 [2 ]中的猜测的正确
5)  complex Riccati equation
复Riccati方程
1.
An exact solution method for nonlinear evolution equations with the help of complex Riccati equation is introduced.
介绍了借助于复Riccati方程求非线性发展方程的精确解的方法。
6)  Riccati equation
Riccati方程
1.
System optimization design for passive sensor network based on the modified Riccati equation;
被动传感器网基于修正Riccati方程的系统优化设计
2.
Haar wavelet solution to initial value of Riccati equation numerical value;
Riccati方程初值问题的Haar小波数值解法
3.
Nonlinear reduced-order observers based on the solution of Riccati equation;
基于Riccati方程解的非线性降维观测器
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条