1) direct theorem
正定理
1.
In this paper,we first construct Jacobi-weights of non-product form,then study the convergence rate of Meyer-Konig-Zeller operators with Jacobi-weights on a simplex by making use of multivariate decompose skills and results of Meyer-Knig-Zeller operators and finally,obtain the approximation direct theorem.
引入二元非乘积型Jacobi权,利用分解技巧及一元的结论,讨论单纯形上Meyer-Knig-Zeller算子加权逼近的收敛阶,得到逼近的正定理。
2.
By the help of Ditzian-Totik moduli of smoothness ω2φ(f,t)p,obtain direct theorems and Steckin-Marchaud inequalities on operators Ln(f,sn,x).
利用Ditzian-Totik光滑模ωφ2(f,t)p给出了算子Ln(f,sn,x)的逼近正定理及Steckin-Marchaud不等式。
3.
The convergence rate of Meyer-Knig-Zeller operators is studied by making use of multivariate decompose skills and results of Meyer-Knig-Zeller operators, and the approximation direct theorem is obtained.
利用分解技巧及一元的结论,讨论单纯型上Meyer-Knig-Zeller算子逼近的收敛阶,得到逼近的正定理。
2) direct and inverse theorems
正逆定理
1.
In this paper, we will use the 2r-th Ditzian-Totik modulus of smoothness to discuss the direct and inverse theorems of Lp metric approximation by Left-Bernstein-Durrmeyer quasi-interpolant operator Mn[2r-1](f), for functions which are defined in the space Lp[0,1] (1≤p≤+∞).
本文利用2r阶Ditzian-Totik光滑模ω_φ~(2r)(f,t)_p讨论了Left-Bernstein-Durrmeyer拟插值算子M_n~([2r-1])(g)对空间L_p[0,1](1≤p≤+∞)中函数在度量L_p下逼近的正逆定理。
3) direct and converse theorem
正逆定理
1.
Heilmann[1J, gives the direct and converse theorems of approxi-mation and the character theorem of derivative.
Heilmann引入的一个算子M_n(f,x),给出逼近的正逆定理和导数的特征刻划定理。
4) sine theorem
正弦定理
1.
Recently,th e sine theorem and cosine theorem in the Euclidean plane E~2 were extended to the 3-dimensional Euclidean space E~3.
近期将欧氏平面E2上的正弦定理和余弦定理推广到三维欧氏空间E3中,建立了E3中四面体空间角正弦定理、二面角正弦定理和四面体余弦定理,利用向量给出了三维余弦定理和三维正弦定理的简单证明。
2.
Based on the concept, the sine theorem for simplex is generalized further.
本文利用 Grassmann代数建立 n维欧氏空间中单形的 k级 n- k+ s维顶点角的概念 ,在此基础上对单形的正弦定理再作推广 ,并获得单形新的一类体积公式和一个几何不等式 。
6) Normal theorem
正规定理
1.
A fundamental inequality is established and some normal theorems on quasi conformal mappings are obtained.
应用覆盖曲面的理论,研究了拟共形映射族,建立了一个基本不等式,得到几个关于拟共形映射的正规定理。
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条