1) Positivstellensatz
正点定理
1.
As the main results,it gives a Positivstellensatz,a Nullstellensatz and a Nichtnegativstellensatz for matrices over a commutative ring.
作为本文的主要结果,关于交换环上矩阵的正点定理,零点定理和非负点定理被建立。
2) direct and inverse theorems
正逆定理
1.
In this paper, we will use the 2r-th Ditzian-Totik modulus of smoothness to discuss the direct and inverse theorems of Lp metric approximation by Left-Bernstein-Durrmeyer quasi-interpolant operator Mn[2r-1](f), for functions which are defined in the space Lp[0,1] (1≤p≤+∞).
本文利用2r阶Ditzian-Totik光滑模ω_φ~(2r)(f,t)_p讨论了Left-Bernstein-Durrmeyer拟插值算子M_n~([2r-1])(g)对空间L_p[0,1](1≤p≤+∞)中函数在度量L_p下逼近的正逆定理。
3) direct theorem
正定理
1.
In this paper,we first construct Jacobi-weights of non-product form,then study the convergence rate of Meyer-Konig-Zeller operators with Jacobi-weights on a simplex by making use of multivariate decompose skills and results of Meyer-Knig-Zeller operators and finally,obtain the approximation direct theorem.
引入二元非乘积型Jacobi权,利用分解技巧及一元的结论,讨论单纯形上Meyer-Knig-Zeller算子加权逼近的收敛阶,得到逼近的正定理。
2.
By the help of Ditzian-Totik moduli of smoothness ω2φ(f,t)p,obtain direct theorems and Steckin-Marchaud inequalities on operators Ln(f,sn,x).
利用Ditzian-Totik光滑模ωφ2(f,t)p给出了算子Ln(f,sn,x)的逼近正定理及Steckin-Marchaud不等式。
3.
The convergence rate of Meyer-Knig-Zeller operators is studied by making use of multivariate decompose skills and results of Meyer-Knig-Zeller operators, and the approximation direct theorem is obtained.
利用分解技巧及一元的结论,讨论单纯型上Meyer-Knig-Zeller算子逼近的收敛阶,得到逼近的正定理。
4) direct and converse theorem
正逆定理
1.
Heilmann[1J, gives the direct and converse theorems of approxi-mation and the character theorem of derivative.
Heilmann引入的一个算子M_n(f,x),给出逼近的正逆定理和导数的特征刻划定理。
5) sine theorem
正弦定理
1.
Recently,th e sine theorem and cosine theorem in the Euclidean plane E~2 were extended to the 3-dimensional Euclidean space E~3.
近期将欧氏平面E2上的正弦定理和余弦定理推广到三维欧氏空间E3中,建立了E3中四面体空间角正弦定理、二面角正弦定理和四面体余弦定理,利用向量给出了三维余弦定理和三维正弦定理的简单证明。
2.
Based on the concept, the sine theorem for simplex is generalized further.
本文利用 Grassmann代数建立 n维欧氏空间中单形的 k级 n- k+ s维顶点角的概念 ,在此基础上对单形的正弦定理再作推广 ,并获得单形新的一类体积公式和一个几何不等式 。
补充资料:三垂线定理的逆定理
Image:11732716937617776.jpg
在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射线垂直。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。