1) Invariant torus
不变环面
1.
Bifurcations of nonhyperbolic invariant torus;
一类非双曲不变环面的分支
2.
By the method of averaging and Floquet theory, the bifurcations of the nonhyperbolic invariant torus in the extended phase space are studied.
利用Floquet理论与平均法 ,讨论在周期扰动下此未扰动系统的非双曲不变环面在扩展相空间中的初等分支 。
3.
By means of periodic transformations and integral manifold theory, we investigate planar periodic perturbed systems, and obtain for the strong resonant case , a condition under which an invariant torus is bifurcated from a weak focus of order one.
本文利用周期变换和积分流形理论研究平面周期扰动系统,在强共振情况下获得了从一阶细焦点分支出不变环面的简洁条件,本文中的非共振条件不同于[5]中所给出的非共振条件。
2) invariant tori
不变环面
1.
In this paper,using KAM theory,we obtain the boundedness of solutions as well as the existence of many invariant tori for jumping nonlinear oscilltions.
利用KAM理论研究了一类跳跃非线性方程解的有界性及大量不变环面的存在性 。
2.
In this paper,bifurcation of subharmonic solutions and invariant tori of a three-dimensional system under periodic perturbation is studied.
假设此三维系统有一族闭轨,利用Poincar(?)映射及积分流形定理,得到了在周期扰动下由这族闭轨产生次调和解和不变环面的条件,并讨论了次调和解的鞍结点分支。
3) lower dimensional tori
低维不变环面
1.
The present paper deals with the persistence of lower dimensional tori, the integrable system has a more general form.
研究可积系统的解析摄动 ,即具有更一般形式的 Hamilton系统的低维不变环面保持性问题 。
2.
In this paper,we consider the persistence of lower dimensional tori of integrable Hamiltonian systems under small analytic perturbations.
本文考虑法向二次型为双曲型退化的可积Hamilton系统在解析小扰动下低维不变环面的保持性问题。
4) Bifurcations of invariant torus
不变环面分叉
5) non-hyperbolic and critical invariant torus
非双曲临界不变环面
1.
The bifurcation of non-hyperbolic and critical invariant torus for the autonomous system is studied by using scaling transformation and the averaging theories.
=F(x)+G(t,x,α),应用比例变换和平均理论研究了该自治系统在空间(x,t)上的非双曲临界不变环面的分支,得到了系统x。
6) nonhyperbolic but noncritical invariant tori
非双曲非临界不变环面
补充资料:变面
1.犹翻脸。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条