说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 功能互等定理
1)  Reciprocal work theorem
功能互等定理
2)  the reciprocal theorem of work
互等功定理
1.
By using Laplace transformation and the reciprocal theorem of work,the analytical solution is achieved.
建立了冲击荷载作用下双参数粘弹性地基上四边弹性嵌固矩形板的一种新型力学模型,利用Laplace变换,变分原理及互等功定理求解了该系统的位移解析解,并进一步讨论了地基参数和弹性支撑刚性系数对板的位移的影响。
2.
By using variational principle,Laplace transformation and the reciprocal theorem of work,the displacement analytic solution of the system was achieved.
利用变分原理、Laplace变换和互等功定理求解了该系统的位移解析解,计算了弹性地基和粘弹性地基上有限矩形板的动力响应,探讨了地基参数和弹性嵌固边界刚性系数对板的动态响应的影响。
3)  the equal law of work
功能互等定律
4)  reciprocal theorem of work
功的互等定理
1.
Based on reciprocal theorem of work,using physical property of four-joint shell element rigidity matrix and concept of structural inner force influence field,a practical calculating method was deduced to calculate inner force influence field of thin-wall box girder and feasibility of the method was verified.
根据功的互等定理,利用四节点壳体单元刚度矩阵的物理特性以及结构内力(应力)影响面的概念,推导出薄壁箱梁结构指定截面内力(应力)影响面的实用计算方法,并通过算例验证了该方法的可行性。
2.
In this paper, a new proof of the mean value theorem of three dimensional elastodynamics is given by constructing a set of special solutions and applying the reciprocal theorem of work.
通过构造一组特解并运用功的互等定理给出了三维弹性动力学中值定理的新证
5)  reciprocal theorem
功的互等定理
1.
Calculation of thick rectangular plate by reciprocal theorem;
应用功的互等定理求解一种厚矩形板的弯曲
2.
The application of reciprocal theorem with large deflections in the calculation of a rectangular plate with three edges simpy supported and the other fixed;
应用大挠度薄板功的互等定理求解三边简支一边固定矩形板的挠曲方程
3.
Application of reciprocal theorem with large deflections in calculation of rectangular plate with four edges simply support;
应用大挠度薄板功的互等定理求解四边简支矩形板的挠曲方程
6)  Betty's reciprocal theorem of work
贝蒂功互等定理
补充资料:功的互等定理
      弹性力学中的一个定理,又称互等功定理,是意大利的E.贝蒂于1872年和英国的瑞利于1873年分别独立提出的,故又称贝蒂-瑞利互等功定理。它可叙述为:如在某线性弹性体上作用两组广义力,则第一组力在第二组力引起的位移上所作的功,等于第二组力在第一组力引起的位移上所作的功。这一定理适用于线弹性体小变形的情况。若上述两组广义力都只包含一个广义力且彼此相等,此定理即化为位移互等定理。
  
  

参考书目
   J. T. Oden, Mechanics of Elastic Structures, McGraw-Hill, New York,1967.
   华东水利学院结构力学教研组编:《结构力学》,上册,水利出版社,北京,1981。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条