说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 网络叠加模型
1)  aggregate network model
网络叠加模型
2)  weighted network model
加权网络模型
3)  superposition model
叠加模型
1.
The application of gray system and the periodical error superposition model in the recognition of seismic anomaly;
灰色与周期残差叠加模型在地震前兆异常识别中的应用
2.
On the influence of the ρ coefficient in superposition model on the calculation of the g factors of ground state
叠加模型中ρ系数对基态g因子计算结果的影响
3.
The local structure and EPR spectra of [VO(H_2O)_5]~(2+) in(NH_4)_2C_4H_4O_6 single crystal are interpreted simultaneously based on superposition model and two-spin-orbit-coupling parameter model.
采用叠加模型和双旋-轨耦合参量模型,建立了结构参数与EPR参量之间的定量关系;较好地解释了[VO(H2O)5]2+络离子的局域结构和EPR参量;研究结果发现,(NH4)2C4H4O6:VO2+晶体中络离子[VO(H2O)5]2+的键长为R//≈0。
4)  superposed model
叠加模型
1.
A superposed model is proposed to simulate the f.
同时提出了绝缘子闪络后线路电压计算的叠加模型,并据此用贝杰龙法计算了闪络前后各相线路各点的对地电压。
2.
Therefore, in this pape we discuss the grey properties of groundwater system, give a superposed model of grey and cyclic error, and forecast the dynamics of the groundwater system by the model.
本文建立了灰色与周期残差叠加模型,并运用模型预测了地下水的变化动态。
5)  model superp osition
模型叠加
6)  overlay network topology
叠加网络拓扑
补充资料:Hopfield神经网络模型


Hopfield神经网络模型
Hopfield neural network model

  收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条