说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 自适应预测器
1)  adaptive prediction filter
自适应预测器
1.
Structural parameter of TDNLMS adaptive prediction filter used in point objects detection in digital image data;
TDNLMS自适应预测器结构参数与点目标检测性能
2)  adaptive prediction
自适应预测
1.
Nonlinear adaptive prediction of chaotic time series based on sparse Volterra filter;
基于稀疏Volterra滤波器混沌时间序列自适应预测
2.
Lossless compression scheme based on IWT and adaptive prediction;
一种基于IWT与自适应预测的无损压缩方案
3.
Study on adaptive prediction method of chaotic vibration
混沌振动的自适应预测方法研究
3)  Adaptive forecasting
自适应预测
1.
Based on time series analysis method adopting ARIMA(p,d,0) model, a kind of real-time adaptive forecasting method for short-term traffic flow was presented .
基于采用ARIMA(p,d,0)模型结构的时间序列分析方法,提出一种短时交通流实时自适应预测算法。
2.
It is realized using adaptive forecasting and the recursive forgetting factor least square method.
该策略运用自适应预测及带遗忘因子的递推最小二乘参数估计的思想,对神经网络的预报输出进行修正,利用鲁棒反馈控制器保证系统稳定性,并对控制信号的增量进行限幅以抑制突变大幅值干扰信号对系统的影响。
4)  adaptive predication
自适应预测
1.
In this paper, based on research on the A type compress and applying the adaptive quantization and adaptive predication, the coding compress is achieved to reduce the storage about one half, and the augment o.
本文针对此问题 ,在研究A律压缩的基础上 ,采用自适应量化和自适应预测的技术 ,以较少增加合成运算量复杂度为代价 ,对语音库的编码实现压缩 ,使压缩后的语音库减小了约一半 ,大大减小了所需的存储空间 。
5)  Volterra adaptive predictive filters
Volterra自适应滤波预测器
6)  sigmoid-Volterra adaptive predictors
sigmoid-Volterra自适应预测滤波器
补充资料:自适应滤波器
      以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的机构组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。
  
  
  20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。
  
  以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得
  
    (1)式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。
  
  B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量
  
    (2)式中憕[ε2(n)]为均方误差梯度估计,
  
  
  (3)ks为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。
  
  自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。
  
  抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。与非递归型结构自适应算法相比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。
  
  自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不同,基本原理则是相同的。
  
  

参考书目
   R.A.Monzingo, T.W.Miller, Introduction to Adaptive Arrays, John Wiley and Sons,New York,1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条