1) lower side Laplace-Sticltjes transtorm
下侧Laplace-Stieltjes变换
2) lower side bitangent L-Stieltjes transform
下侧二重Laplace-Stieltjes变换
3) Laplace-stieltjes transformation
Laplace-stieltjes变换
1.
First, the author turns equation into standard form* use Fourier method tomake the solution of question expand by eigenfunction- use Laplace-stieltjes transformation and theme.
本研究首先将方程化为标准形,利用Fourier方法将问题的解按特征函数展开,并利用Laplace-stieltjes变换和等人应用的方法。
2.
In this paper, the authors investigate the growth of entire functions of infinite order represented by Laplace-Stieltjes transformation; the authors obtain two necessary and sufficient conditions and extend some results of Dirichlet series in the whole plane.
该文系统地研究了在全平面上收敛的无限级Laplace-Stieltjes变换的增长性,得到了两个充要条件,推广了全平面上Dirichlet级数的有关结果。
4) Laplace-Stieltjes transform
Laplace-Stieltjes变换
1.
The type of proximate order of an entire function defined by Laplace-Stieltjes transform
Laplace-Stieltjes变换所定义的整函数的(R)级准确级的型
2.
The value distribution of analytic functions defined by Laplace-Stieltjes transforms in the right half-plane is considered in this paper.
分别对右半平面上有限正级与无穷级Laplace-Stieltjes变换的Borel点的存在性进行了研究,证明了在一定条件下,右半平面上τ(τ>1)级Laplace-Stieltjes变换在虚轴上必有一个τ-级Borel点;ρ((1/σ))级Laplace-Stieltjes变换在虚轴上必有一个无有限例外值的ρ((1/σ))级Borel点。
3.
Then we have investigated the two-order differential equation satisfied by the Laplace-Stieltjes transform of survival probability.
本文考虑了带息力的Erlang(2)风险模型,利用Sundt和Teugels(1995),Yang和Zhang(2001a,2001b和2001c)文中的技巧,得到了生存概率所满足的积分方程和指数型的积分方程,然后研究了生存概率的Laplace-Stieltjes变换所满足的二阶微分方程。
5) lower side Laplace-Stieltjes integrl
下侧Laplace-Stieltjes积分
6) lower side bitangent Laplace Stieltjes integral
下侧二重Laplace-Stieltjes积分
补充资料:Stieltjes变换
Stieltjes变换
Stieltjes transform
stid幼es变换〔stid灯es。田阴云对m;CTH几Tl,eca“碘06-Pa30.姗e】 积分变换(integrait~form) ;。x、二仁Z工丝己:.(.) 名x+tStieltjes变换是在h咖ce变换(加p俪e transform)迭代法中产生的,它是卷积变换的特殊情况. 其逆变换公式之一如下所述:如果函数f(:)沂在(0,的)上是连续的和有界的,则对于x钊0,的),有 !im工二』二「二」’”::2·;(·)。二、1(·)一、‘:). ”一的乙冗Ln」 广义stieitjes变换是 _、f_、dt F(x、=喻f(x),‘井‘宁内, 公“‘’(、+r)二其中P是一个复数. 积分Stieltjes变换(加t eg珍ted Stieltjest~form)是 ;(、)一丁、(二,:)f(:)己。, 0其中 {些三Z三.。,二. 1义一r 入l戈「,=才 {—.r=X. 贬x 对于广义函数也引人了St记坷es变换.ThJ·Stieltjes(18男一1895)研究T变换(*).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条