1) simple vibration response analysis
简谐振动响应分析
3) harmonic response analysis
谐响应分析
1.
On the harmonic response analysis of the power for the main girder of DF50/160 bridge machine
DF50/160架桥机主梁的动力谐响应分析
2.
Targeted at the study of the effect of star-wheel rotational speed on loading mechanism of continuous miner and roadheader,the paper offers modal analysis and harmonic response analysis of a star-wheel loading mechanism by means of finite element analysis software ANSYS.
为了研究星轮转速对连续采煤机和掘进机装载机构效率的影响,采用有限元分析软件ANSYS,对星轮装载机构进行了模态分析和谐响应分析,分别得出了星轮机构前10阶固有频率及位移与频率的关系曲线,确定星轮机构不发生共振的激振频率在1。
3.
Dynamic analysis includes model analysis and harmonic response analysis.
运用ANSYS软件动力学分析中的模态分析和谐响应分析方法,研究了超声加工中变幅杆的动态性能。
4) harmonic analysis
谐响应分析
1.
Finite element dynamics method is used to carry out modal analysis and harmonic analysis to vibration system of ultrasonic honing.
运用有限元动力学分析方法对超声珩磨振动系统进行了模态分析以及谐响应分析,得到了弯曲振动圆盘、振动子系统的谐振频率以及油石座的谐振位移。
2.
According to the reality and application requirement of pier bases in the workshop of the Xiacheng Hydropower Plant,the paper sets up a 3-D finite element model,researches on the dynamic characteristics of pier base and,with the ANSYS software,compares the impacts of different intercepted boundaries of numerical value models to the harmonic analysis of pier bases.
利用ANSYS结构分析软件,研究了机墩的动力特性,比较了数值分析模型不同截取边界对机墩谐响应分析成果的影响。
3.
A new method of using the harmonic analysis of ANSYSTM, a kind of finite element tool, is proposed.
提出了一种用有限元工具ANSYSTM的谐响应分析功能仿真陀螺在模态频率下位移的方法。
5) harmonic response
简谐响应
1.
Analytical solution of 1-D harmonic response in saturated soil;
饱和土一维简谐响应解析解的求解和应用I 求解
2.
Analysis of harmonic response of unconstrained damped plate based on randomness of viscoelastic damping layer;
基于粘弹性阻尼层随机性自由阻尼层板简谐响应分析
3.
The steady-state harmonic response of stiffened plate with damping treatment of viscoelastic beamis studied using modal superposition method.
应用模态叠加法研究了以粘弹性梁为阻尼处理的加筋板的稳态简谐响应。
6) subharmonic resonance response
分谐波共振响应
补充资料:简谐振动(harmonicvibration)
【简谐振动】(harmonicvibration)振动的一种形式。一个作直线振动的质点,如果取其平衡位置为原点,取其运动轨道沿`x`轴,那么当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数时:`x=Acos((2\pi)/Tt \phi)`,这一直线振动便是简谐振动。式中`A`表示质点离开平衡位置时`(x=0)`的最大位移绝对值,称“振辐”,`T`是简谐振动的周期,`((2\pi)/Tt \phi)`角称为简谐振动
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条