1) composition motion of a point
点的合成运动
1.
Relation between kinematics of a point and composition motion of a point in the kinematics of theoretical mechanics was interpreted.
阐述了理论力学的运动学中 ,点的运动学和点的合成运动之间的关系 ,指出点的合成运动应该是工科理论力学教材和教学研究中的重点。
3) composite motion of particle
点的复合运动
1.
Velocity and acceleration of particle is derived in terms of globular coordinates based on the theory of composite motion of particle.
本文基于点的复合运动理论,用球坐标法推导出点的速度及加速度的计算公式,进一步论证了理论力学中点的速度,加速度公式的正确性。
4) composition of circular motion
圆周运动的合成
5) motion of point
点的运动
6) the plane complex movement of a particle
动点的平面复合运动
补充资料:刚体运动的合成
将两种或两种以上的刚体基本运动合成为一种运动。直线平动和绕定轴转动是刚体的两种基本运动。各种较复杂运动都可分解为几个基本运动;反之,由几个基本运动也能合成较复杂的运动。例如,任意平动可分解为沿x、y、z的三个直线平动。又如,沿轴Oz的直线平动和绕轴Oz的转动可合成为螺旋运动;钻头钻孔和改锥拧螺丝时的运动就属此类。
研究两种或两种以上的转动的合成时,可利用角速度所具有的滑动矢量的性质。例如,设刚体以角速度ω1绕轴Ⅰ转动,轴Ⅰ又以角速度ω2绕轴Ⅱ转动,且轴Ⅰ和Ⅱ相交于O点(图1),则此刚体的合成运动是以角速度Ω=ω1+ω2绕轴Ⅲ的转动,轴Ⅲ与Ω重合,也通过点O。
如果轴Ⅰ和Ⅱ平行,则ω1和ω2可以按平行滑动矢量相加。特殊情形是ω1=-ω2。这时,合成运动是与轴Ⅰ、Ⅱ相垂直的平面平动,刚体内所有各点都作同样的圆周运动,刚体的这种运动称为转动偶。图2上所示的行星齿轮机构中,中心齿轮O1固定不动,系杆O1O2O3以角速度ω1绕轴O1转动,行星齿轮O2、O3相对于系杆分别以角速度ω2、ω3绕轴O2、O3转动。这样,行星齿轮O2的运动由绕平行轴Ⅰ和Ⅱ的同向转动ω1和ω2合成;行星齿轮O3的运动由绕平行轴Ⅰ和Ⅲ的反向转动ω1和ω3合成 (可同平行力的合成作比较)。如果轮O1、O3 的半径相等,则ω1和ω3的大小相等,这时,轮O3的运动就是转动偶。
研究两种或两种以上的转动的合成时,可利用角速度所具有的滑动矢量的性质。例如,设刚体以角速度ω1绕轴Ⅰ转动,轴Ⅰ又以角速度ω2绕轴Ⅱ转动,且轴Ⅰ和Ⅱ相交于O点(图1),则此刚体的合成运动是以角速度Ω=ω1+ω2绕轴Ⅲ的转动,轴Ⅲ与Ω重合,也通过点O。
如果轴Ⅰ和Ⅱ平行,则ω1和ω2可以按平行滑动矢量相加。特殊情形是ω1=-ω2。这时,合成运动是与轴Ⅰ、Ⅱ相垂直的平面平动,刚体内所有各点都作同样的圆周运动,刚体的这种运动称为转动偶。图2上所示的行星齿轮机构中,中心齿轮O1固定不动,系杆O1O2O3以角速度ω1绕轴O1转动,行星齿轮O2、O3相对于系杆分别以角速度ω2、ω3绕轴O2、O3转动。这样,行星齿轮O2的运动由绕平行轴Ⅰ和Ⅱ的同向转动ω1和ω2合成;行星齿轮O3的运动由绕平行轴Ⅰ和Ⅲ的反向转动ω1和ω3合成 (可同平行力的合成作比较)。如果轮O1、O3 的半径相等,则ω1和ω3的大小相等,这时,轮O3的运动就是转动偶。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条