1) linear multistep methods
线性多步法
1.
Stability of linear multistep methods for neutral volterra delay integral differential equations;
中立型Volterra时滞积分微分方程线性多步法的稳定性(英文)
2.
The sufficient conditions for the dissipativity of theoretical solution of the mentioned problem were given,and the numerical solution was dissipative in some proper conditions for a class of linear multistep methods when they were applied to these problems.
首先,对此类中立型延迟微分方程理论解的散逸性给出了充分条件;随后,应用一类线性多步法求解至该类问题,证明了在适当条件下,其数值解也具有散逸性;最后,数值试验进一步验证了理论结果的正确性。
3.
General one-leg methods and linear multistep methods are applied to the continuous-time waveform relaxation iteration schemes for a class of nonlinear differential-algebraic equations and the discrete-time waveform relaxation schemes are obtained.
针对一类非线性微分代数方程连续时间波形松弛迭代格式,应用一般的单支方法和线性多步法,得到离散时间波形松弛迭代格式。
2) linear multistep method
线性多步法
1.
The sufficient condition which analytical solution of neutral delay differential equations with multiple delays is asymptotically stable was given; the asymptotic stability of linear multistep methods for the numerical solution of neutral delay differential equations with multiple delays was discussed.
给出并证明了多延迟中立型系统渐近稳定的充分条件;分析了用线性多步法求解多延迟中立型系统数值解的稳定性,基于Lagrange插值,证明了数值求解多延迟中立型系统的线性多步法渐近稳定的充分必要条件是它是A-稳定的。
2.
The asymptotic stability of linear multistep methods for the numerical solution of neutral delay differential equations with multiple delays is discussed.
分析了用线性多步法求解一类多延迟中立型系统数值解的稳定性,在一定的La- grange插值条件下,给出并证明了求解多延迟中立型系统的线性多步法数值稳定的充分必要条件。
3.
The results obtained show that the conclusions about the algebraic stability of the same linear multistep method under different choices of inner vectors are probably different, and in A stable linear 2 step methods, the method which is always algebraically stable under all different choices of inner vectors is unique, and in fact, it is the 2 step Gear’s method with order 2.
讨论了在内向量不同选取下的线性多步法和单支法的代数稳定性。
3) linear multi-step method
线性多步法
1.
Linear Multi-step Method is the way to precisely solve the differential equations.
线性多步法是求解微分方程的一种精度较高的方法,而目前用线性多步法得到的许多优美的公式既没有给出通解结构,也没有给出相应的局部截断误差。
4) Linear multi-step methods
线性多步法
1.
This paper is concerned with the step criteria of linear multi-step methods for neutrally delayed differential equations.
讨论了线性多步法用于求解中立型延迟微分方程时的步长准则,给出了数值解渐近稳定的一个充分条件,最后的数值试验验证了本文所获理论结果的正确性。
2.
In order to solve these equations, scholars have designed a lot of numerical methods, such as Runge-Kutta method, linear multi-step methods, Rosonbrock method and so on.
为求解这些方程,学者们构造了许多的数值计算方法,如:Runge-Kutta方法、线性多步法、Rosonbrock方法等。
5) linear multi step integral method
线性多步积分法
1.
A new modeling of high speed interconnects was made up using the traditional order reduction method, Arnoldi arithmetic, based on the linear multi step integral method, which has the consistent form with the integrated circuits.
基于线性多步积分法 (LMIM)建立了高速互连系统的数值模型 ,该模型具有和集总参数电路相容的形式 ;在此基础上 ,结合 Arnoldi算法 ,建立了互连系统相应的缩减模型 ;利用该缩减数值模型可以消除传统缩减模型仅适用于 RLC电路的条件限制 。
2.
The linear multi step integral method (LMIM) was presented for the transient simulation of the inter connects in high speed VLSI.
利用线性多步积分法分析了高速 VLSI中互连线的瞬态响应问题 。
6) linear multistep method
线性多步方法
1.
A class of linear multistep method for solving initial value problems of ordinary differential equations;
一类求解常微分方程初值问题的线性多步方法
补充资料:多步法
见常微分方程初值问题数值解法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条