1) wake vortex separation
尾流间隔
1.
This paper analyses the classification of radar wake vortex separation standards,the mechanism of vortex decay and the wake vortex encounter hazard.
分析了雷达尾流间隔标准的分类,通过尾流的形成机理和对后机影响的分析,建立了后机的危险遭遇模型和前机的尾流消散模型,给出了在确定的时间间隔下确定尾流危险遭遇概率的方法。
2) wake turbulence separation standard
尾流间隔标准
1.
The runway capacity of a single runway system on the basis of the length of final approach path,approach velocity,takeoff velocity,runway holding time,and wake turbulence separation standard was introduced.
单跑道系统的跑道容量问题,是基于对进近段长度、进近速度、起飞速度、跑道占用时间以及尾流间隔标准等对跑道容量影响的研究,建立单跑道容量的数学模型,依据中国民用航空总局(CAAC)规定的尾流间隔标准对跑道的3种容量进行了计算,并和美国联邦航空管理局(FAA)规定的尾流间隔标准的计算结果进行了对比。
3) decaying model
尾涡间隔
5) spacing current
间隔电流
6) streamline space
流线间隔
补充资料:尾流
运动物体后面或物体下游的紊乱旋涡流,又称尾迹。流体绕物体运动时,物体表面附近形成很薄的边界层涡旋区。如果物体是象建筑物或桥墩那样的非流线型物体,流动将从物体后部表面分离,并有涡旋断续地从物体表面脱落。这些薄边界层或分离流涡旋区将顺流而下,在物体后面形成紊乱的、充满大大小小旋涡的尾流。如果物体是钝体,尾流能保持很远距离,并对处于尾流中的其他物体产生影响。
在远离物体下游处,尾流可用边界层理论进行分析。以下只限于讨论低速湍性尾流。附图所示为圆柱后面的平面湍性尾流流型。其中虚曲线表示尾流边界。从图上可以看出,由于物体的阻滞作用,尾流中速度将"亏损"(即减小)。从速度分布看,尾流象是反过来画的射流,而且在远离物体的下游处,尾流的亏损速度(用Δū表示)分布也具有相似性,即
,式中Δū为最大速度亏损;b为尾流宽度的一半;y为纵坐标。但是,尾流与射流根本不同。尾流的对流加速度比射流大得多。由边界层方程推出的尾流方程也不一样。
H.施利希廷根据混合长和相似性等假设,求出平面湍性尾流的解。其主要结果如下:①尾流宽度同到物体的距离的平方根成正比;②亏损速度分布为:
Δū/Δū=[1-(y/b)3/2]2;③尾流中心最大速度亏损同上述距离的平方根成反比。当这一距离很大时,尾流速度亏损可以忽略。
对于三维物体后面的尾流可作类似的分析。在高速尾流中应当考虑流体的可压缩性影响。在高超声速尾迹中则发生一系列物理化学现象,其分析方法根本不同。
参考书目
谢象春著:《湍流射流理论与计算》,科学出版社,北京,1975。
在远离物体下游处,尾流可用边界层理论进行分析。以下只限于讨论低速湍性尾流。附图所示为圆柱后面的平面湍性尾流流型。其中虚曲线表示尾流边界。从图上可以看出,由于物体的阻滞作用,尾流中速度将"亏损"(即减小)。从速度分布看,尾流象是反过来画的射流,而且在远离物体的下游处,尾流的亏损速度(用Δū表示)分布也具有相似性,即
,式中Δū为最大速度亏损;b为尾流宽度的一半;y为纵坐标。但是,尾流与射流根本不同。尾流的对流加速度比射流大得多。由边界层方程推出的尾流方程也不一样。
H.施利希廷根据混合长和相似性等假设,求出平面湍性尾流的解。其主要结果如下:①尾流宽度同到物体的距离的平方根成正比;②亏损速度分布为:
Δū/Δū=[1-(y/b)3/2]2;③尾流中心最大速度亏损同上述距离的平方根成反比。当这一距离很大时,尾流速度亏损可以忽略。
对于三维物体后面的尾流可作类似的分析。在高速尾流中应当考虑流体的可压缩性影响。在高超声速尾迹中则发生一系列物理化学现象,其分析方法根本不同。
参考书目
谢象春著:《湍流射流理论与计算》,科学出版社,北京,1975。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条