1) statistical regression model
统计回归模型
1.
The principal component analysis of factors of BP neural network model and statistical regression model has been carried out by an example; and the effects of factor correlativity on the two kinds of dam monitoring models are studied.
通过实例分别对BP神经网络模型和统计回归模型进行了建模因子的主成分分析,通过对相应原始模型的比较,研究了因子相关性对两种模型的影响,结果证明因子相关性对BP神经网络模型基本无影响,对统计回归模型影响较大。
2.
To make full use of BP neural network model and statistical regression model of dam, through illustrations a comparison between them is made in three aspects, i.
当需对大坝的监测数据作分解和解释时,则适宜采用统计回归模型。
3.
On the basis of principle of the classical threshold auto--regression model, we advanced anew statistical regression model and a relative building method via introducing the semi--polynomialtransformation.
根据经典门限自回归模型的基本思想,引人半截多项式变换,导出了一种新的统计回归模型,并提出了相应的一整套建模方案。
2) statistic AR model
统计自回归模型
3) statistical regression analysis model
统计回归分析模型
1.
Based on some measured data of gravity dam of Shiban Hydropower Station, taking into account the influence of water, temperature and time on the seepage and seepage-pressure of dam foundation, a statistical regression analysis model for seepage and seepage-pressure has been established by the stepwise regression analysis method.
通过对石板水电站重力坝坝基渗流、渗压多年观测数据的统计分析,考虑水位、温度和时效的影响,采用逐步回归分析法建立了坝基渗流、渗压的统计回归分析模型。
2.
Taking into account the influential factors including time,temperature and rainfall,a deformation statistical regression analysis model for slope is established.
考虑时效、温度和降雨等对边坡变形的影响,并将其作为边坡变形的影响因子,建立边坡变形统计回归分析模型,应用Microsoft Visual C++网络编程技术和逐步回归分析算法在自行开发的岩土边坡监测信息管理与监测数据分析网络系统中实现可视化的边坡变形回归与预测。
4) multi-statistical regression model
多元回归统计模型
1.
A concrete dam deformation forecasting model is established based on the particle swarm optimization(PSO) algorithm and the traditional multi-statistical regression model.
将粒子群算法引入大坝安全监控领域,并结合多元回归统计模型,建立基于粒子群算法的混凝土坝变形预报模型。
5) measurement and regre ssion model
计量回归模型
6) count-based model
计数回归模型
补充资料:多元线性回归模型
分子式:
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
CAS号:
性质:假定从理论上或经验上已经知道输出变量y是输入变x1,x2,…,xm的线性函数,但表达其线性关系的系数是未知的,要根据输入输出的n次观察结果(c11,x21,…,xml,yi)(i=1,n)来确定系数的值。按最小二乘法原理来求出系数值,所得到的模型为多元线性回归模型。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条