1) bus positioning deviation
总线定位偏差
2) location deviation
定位偏差
1.
The linear measurement principle of flattened diameter of the ocular cornea and the location deviation of the cone prism which is used in the applanation tonometer are introduced.
介绍了用于压平眼压计的圆台压平棱镜进行角膜压平直径线性测量原理及定位偏差分析;着重讨论了光通量补偿及角膜压平面积线性测量原理;也介绍了利用计算机图形学设计和制作通量补偿片的方法。
2.
In view of large location deviation of the feature point images in vision-based pose measurement of parallel mechanism,a compensation method is proposed on the basis of approximation solution of parallel mechanism pose.
针对并联机构位姿视觉测量中特征点像点定位偏差大的问题,提出了基于并联机构位姿近似求解的补偿方法。
3) positional error
定位偏差
1.
The paper,which is aimed at the readable and measurable of PIV image with dirtect measurement,discusses the error law in the procedure among analog image acquisition and the central position of a particle spot and proposes a testing method used to estimate positional error of particle spot.
本文针对PIV技术的直接测量法中图像的可读性和可测性,讨论了从模拟图像到数字图像,最后到粒子像斑中心位置的确定过程中的误差规律;并提出一种称之为粒子像斑定位偏差综合评估的试验方法。
2.
The paper,which is aimed at the readable and measurable of PIV image with direct measurement,discusses the error law in the procedure among analog image acquisition and the central position of a particle spot and proposes an experiment method used to estimate positional error of particle spot.
针对PIV技术的直接测量法中图像的可读性和可测性,讨论了从模拟图像到数字图像,最后到粒子像斑中心位置的确定过程中的误差规律;并提出一种称之为粒子像斑定位偏差综合评估的试验方法。
4) deviation and mispla cement
偏差定位
5) locating deviation
定位偏差量
1.
The variation of locating deviation from Hypo81,GELor-p and Genetic methods with interspace angle is analyzed with 149 ML≥2.
0级地震149个,针对每个地震记录的具体情况,综合考虑最大空隙角、近台距离、远台距离、台数等因素,选取台站分布相对合理的4~12个台站,利用首都圈数字地震台网交互处理系统提供的Hypo81、GELor-p、Genetic3种定位方法分别进行定位处理,将3种定位结果与全国地震月报目录进行对比得到定位偏差量,定量分析了3种定位方法的定位偏差量随空隙角的变化,探讨了Hypo81、GELor-p、Genetic3种定位方法的定位效果、稳定性及适用性。
补充资料:PC总线
诠释PC总线
从英特尔奔腾到奔腾Ⅲ,主板上的芯片组的结构和作用都没有太大的变化,一般分成2部分,由2块集成芯片组成,通过专用总线进行连接,这就是我们所称的“桥”,简单地来说桥就是一个总线转换器和控制器。它实现各类微处理器总线通过一个PCI总线进行连接的标准,可见,桥是不对称的。在桥的内部包含有兼容协议以及总线信号线和数据的缓冲电路,以便把一条总线映射到另一条总线上。
目前流行的主板上2块桥,一块负责与CPU、主存连接,另一块与ISA,PCI总线上的各种板卡、键盘、鼠标等输入/输出电路进行连接。我们习惯上将与CPU连接的芯片称为北桥,与I/O设备连接的芯片称为南桥。为了更好的了解微机的硬件知识,本文就微机总线做以下简单介绍。
一、总线
所谓总线,笼统来讲,就是一组进行互连和传输信息(指令、数据和地址)的信号线。计算机的总线都是有特定的含义。如“局部总线”、“系统总线”等。
二、总线分类
按性质和应用来划分,一般将总线划分为3类:
①局部总线
在以Windows为代表的图形用户接口(GUI)进入PC机之后,要求有高速的图形描绘能力和I/O处理能力。这不仅要求图形适配卡要改善其性能,也对总线的速度提出了挑战。实际上当时外设的速度已有了很大的提高,如硬磁盘与控制器之间的数据传输率已达10MB/s以上,图形控制器和显示器之间的数据传输率也达到69MB/s。通常认为I/O总线的速度应为外设速度的3~5倍。因此原有的ISA、EISA已远远不能适应要求,而成为整个系统的主要瓶颈。
局部总线是PC体系结构的重大发展。它打破了数据I/O的瓶颈,使高性能CPU的功能得以充分发挥。从结构上看,所谓局部总线是在ISA总线和CPU总线之间增加的一级总线或管理层。这样可将一些高速外设,如图形卡、硬盘控制器等从ISA总线上卸下而通过局部总线直接挂接到CPU总线上,使之与高速的CPU总线相匹配。
而采用PCI总线后,数据宽度升级到64位,总线工频率为33.3MHZ,数据传输率(带宽)可达266MB/S。所以采用PCI总线大大解决了数据的I/O瓶颈,使计算机更好地发挥性能。
②系统总线
这是微机系统内部各部件(插板)之间进行连接和传输信息的一组信号线。例如ISA总线。由于它只具有16位数据宽度,最高工作频率为8MHz,所以数据传输速率只能达到16MB/S。我们可以比较一下ISA总线与PCI总线带宽(数据传输率),就知道为什么现在的主板开始逐渐淘汰ISA插槽,如升技BF6主板有6个PCI插槽一个ISA插槽。
③通信总线
通信总线是系统之间或微机系统与设备之间进行通信的一组信号线。三、总线主要性能比较
评价一种总线的性能主要注意以下几个方面参数
A、总线时钟频率:总线的工作频率,以MHZ表示,它是影响总线传输速率的重要因素之一。
B、总线宽度:数据总线的位数,用位(bit)表示,如总线宽度为8位、16位、32位和64位。
C、总线传输速率:在总线上每秒钟传输的最大字节数MB/S,即每秒处理多少兆字节。那么我们如何通过总线宽度和总线时钟频率来计算总线传输速率(带宽)。
传输速率=总线时钟频率x总线宽度/8
如升技BF6主板,PCI总线总线宽度16位,当总线频率66MHZ,总线数据传输速率=66x18/8(MB/S)=133(MB/S)。
为了更好地理解总线带宽、总线位宽、总线工作时钟频率的关系,我们举个比较形象的例子,高速公路上的车流量取决于公路车道的数目和车辆行驶速度,车道越多、车速越快则车流量越大;总线带宽就象是高速公路的车流量,总线位宽仿佛高速公路上的车道数,总线时钟工作频率相当于车速,总线位宽越宽、总线工作时钟频率越高则总线带宽越大。当然,影响总线性能的参数还有很多,如其同步方式、负载能力、信号线等等,但以上所介绍的三个是其重要参数。
从英特尔奔腾到奔腾Ⅲ,主板上的芯片组的结构和作用都没有太大的变化,一般分成2部分,由2块集成芯片组成,通过专用总线进行连接,这就是我们所称的“桥”,简单地来说桥就是一个总线转换器和控制器。它实现各类微处理器总线通过一个PCI总线进行连接的标准,可见,桥是不对称的。在桥的内部包含有兼容协议以及总线信号线和数据的缓冲电路,以便把一条总线映射到另一条总线上。
目前流行的主板上2块桥,一块负责与CPU、主存连接,另一块与ISA,PCI总线上的各种板卡、键盘、鼠标等输入/输出电路进行连接。我们习惯上将与CPU连接的芯片称为北桥,与I/O设备连接的芯片称为南桥。为了更好的了解微机的硬件知识,本文就微机总线做以下简单介绍。
一、总线
所谓总线,笼统来讲,就是一组进行互连和传输信息(指令、数据和地址)的信号线。计算机的总线都是有特定的含义。如“局部总线”、“系统总线”等。
二、总线分类
按性质和应用来划分,一般将总线划分为3类:
①局部总线
在以Windows为代表的图形用户接口(GUI)进入PC机之后,要求有高速的图形描绘能力和I/O处理能力。这不仅要求图形适配卡要改善其性能,也对总线的速度提出了挑战。实际上当时外设的速度已有了很大的提高,如硬磁盘与控制器之间的数据传输率已达10MB/s以上,图形控制器和显示器之间的数据传输率也达到69MB/s。通常认为I/O总线的速度应为外设速度的3~5倍。因此原有的ISA、EISA已远远不能适应要求,而成为整个系统的主要瓶颈。
局部总线是PC体系结构的重大发展。它打破了数据I/O的瓶颈,使高性能CPU的功能得以充分发挥。从结构上看,所谓局部总线是在ISA总线和CPU总线之间增加的一级总线或管理层。这样可将一些高速外设,如图形卡、硬盘控制器等从ISA总线上卸下而通过局部总线直接挂接到CPU总线上,使之与高速的CPU总线相匹配。
而采用PCI总线后,数据宽度升级到64位,总线工频率为33.3MHZ,数据传输率(带宽)可达266MB/S。所以采用PCI总线大大解决了数据的I/O瓶颈,使计算机更好地发挥性能。
②系统总线
这是微机系统内部各部件(插板)之间进行连接和传输信息的一组信号线。例如ISA总线。由于它只具有16位数据宽度,最高工作频率为8MHz,所以数据传输速率只能达到16MB/S。我们可以比较一下ISA总线与PCI总线带宽(数据传输率),就知道为什么现在的主板开始逐渐淘汰ISA插槽,如升技BF6主板有6个PCI插槽一个ISA插槽。
③通信总线
通信总线是系统之间或微机系统与设备之间进行通信的一组信号线。三、总线主要性能比较
评价一种总线的性能主要注意以下几个方面参数
A、总线时钟频率:总线的工作频率,以MHZ表示,它是影响总线传输速率的重要因素之一。
B、总线宽度:数据总线的位数,用位(bit)表示,如总线宽度为8位、16位、32位和64位。
C、总线传输速率:在总线上每秒钟传输的最大字节数MB/S,即每秒处理多少兆字节。那么我们如何通过总线宽度和总线时钟频率来计算总线传输速率(带宽)。
传输速率=总线时钟频率x总线宽度/8
如升技BF6主板,PCI总线总线宽度16位,当总线频率66MHZ,总线数据传输速率=66x18/8(MB/S)=133(MB/S)。
为了更好地理解总线带宽、总线位宽、总线工作时钟频率的关系,我们举个比较形象的例子,高速公路上的车流量取决于公路车道的数目和车辆行驶速度,车道越多、车速越快则车流量越大;总线带宽就象是高速公路的车流量,总线位宽仿佛高速公路上的车道数,总线时钟工作频率相当于车速,总线位宽越宽、总线工作时钟频率越高则总线带宽越大。当然,影响总线性能的参数还有很多,如其同步方式、负载能力、信号线等等,但以上所介绍的三个是其重要参数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条