说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> MHD方程
1)  MHD equations
MHD方程
1.
The governing equations are 2D idea MHD equations and continuous equations of species,where five species and seventeen reactions are considered.
MHD方程空间离散采用AUSM格式,时间推进采用显式5步龙格-库塔格式,并通过弱耦合的方式与化学反应控制方程结合在一起。
2.
Based on the global existence of strong solution of MHD equations on three dimen- sional thin domain,asymptotic expansion for the strong solution (u,h) of MHD equations is obtained,and this expansion holds uniformly for all the time tC0.
在强解全局存在的基础上,得到了三维薄区域上MHD方程的解(u,h)对任意时间t■0的渐进分析。
3.
We consider the following incompressible MHD equations in R_+~n × (0,∞)where n is the space dimension, u = u(x, t) = (u~1(x, t), .
本文考虑R_+~n×(0,∞)上的不可压MHD方程组 其中n为空间维数。
2)  MHD formulation
MHD方程
3)  MHD
MHD方程
1.
The upwind flux splitting scheme for the hypersonic idea MHD flows around a blunt body on unstructured hybrid meshes is presented.
控制方程为Euler方程耦合Maxwell方程的理想MHD方程,空间离散采用AUSM格式,时间推进采用显式5步Runge-Kutta格式。
4)  MHD
MHD方程组
5)  MHD equations
MHD方程组
1.
Corresponding to the particle simulation, the method of solving the ideal MHD equations with WENO scheme has been presented to simulate the space collisionless shock.
采用了WENO格式数值求解一维理想MHD方程组,模拟了行星际无碰撞激波,研究了垂直无碰撞激波与行星际反向磁场结构和高密度等离子体团的相互作用过程,并与粒子模拟的结果进行比对,两者的结果非常类似。
2.
We consider the following nonstationary MHD equations in R~3 × [0,∞) :The unknown functions u = u(x, t), B = B(x,i), p = p(x, t) are the velocity fields, the magnetic fields and the pressure respectively, u_0 = u_0(x), B_0 = B_0{x) are the initial velocity and the magnetic field respectively.
本文考虑R~3×[0,+∞)上的非定常MHD方程组 其中u=u(x,t),B=B(x,t)分别表示未知速度向量和未知磁场,p=p(x,t)表示压力函数,u_0=u_0(x),B_0=B_0(x)分别表示初始速度与初始磁场。
6)  idea MHD equations
理想MHD方程
1.
Based on MacCormack s scheme and considering its weak instability,a new Jacobian matrix splitting method for the idea MHD equations is developed and verified by test cases.
针对理想MHD方程,提出了一种新的基于MacCormack算法的雅可比矩阵分裂方法,克服了原有方法稳定性差的问题,并成功地应用于理想MHD方程的求解。
补充资料:泊松方程和拉普拉斯方程
      势函数的一种二阶偏微分方程。广泛应用于电学、磁学、力学、热学等多种热场的研究与计算。
  
  简史  1777年,J.L.拉格朗日研究万有引力作用下的物体运动时指出:在引力体系中,每一质点的质量mk除以它们到任意观察点P的距离rk,并且把这些商加在一起,其总和即P点的势函数,势函数对空间坐标的偏导数正比于在 P点的质点所受总引力的相应分力。1782年,P.S.M.拉普拉斯证明:引力场的势函数满足偏微分方程:,叫做势方程,后来通称拉普拉斯方程。1813年,S.-D.泊松撰文指出,如果观察点P在充满引力物质的区域内部,则拉普拉斯方程应修改为,叫做泊松方程,式中ρ为引力物质的密度。文中要求重视势函数 V在电学理论中的应用,并指出导体表面为等热面。
  
  静电场的泊松方程和拉普拉斯方程  若空间分区充满各向同性、线性、均匀的媒质,则从静电场强与电势梯度的关系E=-墷V和高斯定理微分式,即可导出静电场的泊松方程:
  
   ,
  式中ρ为自由电荷密度,纯数 εr为各分区媒质的相对介电常数,真空介电常数εo=8.854×10-12法/米。在没有自由电荷的区域里,ρ=0,泊松方程就简化为拉普拉斯方程
  
   。
  在各分区的公共界面上,V满足边值关系
  
  
  
  
  式中i,j指分界面两边的不同分区,σ 为界面上的自由电荷密度,n表示边界面上的内法线方向。
  
  边界条件和解的唯一性  为了在给定区域内确定满足泊松方程以及边值关系的解,还需给定求解区域边界上的物理情况,此情况叫做边界条件。有两类基本的边界条件:给定边界面上各点的电势,叫做狄利克雷边界条件;给定边界面上各点的自由电荷,叫做诺埃曼边界条件。
  
  边界几何形状较简单区域的静电场可求得解析解,许多情形下它们是无穷级数,稍复杂的须用计算机求数值解,或用图解法作等势面或力线的场图。
  
  除了静电场之外,在电学、磁学、力学、热学等领域还有许多服从拉普拉斯方程的势场。各类物理本质完全不同的势场如果具有相似的边界条件,则因拉普拉斯方程解的唯一性,任何一个势场的解,或该势场模型中实验测绘的等热面或流线图,经过对应物理量的换算之后,可以通用于其他的势场。
  
  静磁场的泊松方程和拉普拉斯方程  在SI制中,静磁场满足的方程为
  
  
  式中j为传导电流密度。第一式表明静磁场可引入磁矢势r)描述:
  
  
  
  在各向同性、线性、均匀的磁媒质中,传导电流密度j0的区域里,磁矢势满足的方程为
  
  
  选用库仑规范,墷·r)=0,则得磁矢势r)满足泊松方程
  
  
  式中纯数μr 为媒质的相对磁导率, 真空磁导率μo=1.257×10-6亨/米。在传导电流密度j=0的区域里,上式简化为拉普拉斯方程
  
  
  静磁场的泊松方程和拉普拉斯方程是矢量方程,它的三个直角分量满足的方程与静电势满足的方程有相同的形式。对比静电势的解,可得矢势方程的解。
  
  

参考书目
   郭硕鸿著:《电动力学》,人民教育出版社,北京,1979。
   J.D.杰克逊著,朱培豫译:《经典电动力学》下册,人民教育出版社,北京,1980。(J.D. Jackson,Classical Electrodynamics,John Wilye & Sons,New York,1976.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条