1) mathematical reasoning
数学推理
1.
Firstly, proceeding from the comprehension of mathematical reasoning and its ability, this article elaborated on the importance of deductive reasoning and plausible reasoning to correct long-term cognition of.
首先,本文从对数学推理、数学推理能力的理解着手,使人们对数学推理能力有一个较为全面的、科学的认识,纠正长期以来数学教学注重采用“形式化”的方式发展学生的论证推理能力,而忽视合情推理能力的培养。
2) mathematical inference
数学推理
1.
The training of the mathematical inference ability can make the students grasp the truth of thinking and expressing according to the logic, so that they can learn the thought of proving logically.
数学推理能力训练能使学生领悟依据逻辑进行思考、表述的真谛,从而学会逻辑地推演的思想,这也是数学教育对素质教育的重要贡献。
3) mathematical logic inference
数学逻辑推理
5) mathematical inference ability
数学推理能力
1.
The training of the mathematical inference ability can make the students grasp the truth of thinking and expressing according to the logic, so that they can learn the thought of proving logically.
数学推理能力训练能使学生领悟依据逻辑进行思考、表述的真谛,从而学会逻辑地推演的思想,这也是数学教育对素质教育的重要贡献。
6) double characteristics of mathematical reasoning
数学推理的两重性
1.
There are some dialectical factors in the interaction between Poincare s intuition thinking and logic thinking,in the analysis of the distinct function of intuition in mathematical creation,especially in the analysis of double characteristics of mathematical reasoning.
彭加勒对数学中直觉思维与逻辑思维的互动关系、对直觉在数学创造中的独特 作用的分析,尤其是对数学推理的两重性的分析,包含辩证法的要素。
补充资料:数学推理
理之如水也,易为下。
水下流则失势,上流则理不容。
充分者,势高也;必要者,势下也;充分必要者,势等也。
是故推理如导水。
条件者,水之来也;结论者,流之往也;证明者,至也。
善攻者,因于地,尽其势而至,急流也。
善守者,取于天,至而不失其势,平流也。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条