1) biarc spline
双圆弧样条
1.
After analyzing profoundly the function and its DXF group codes of various kind of spline curves in AutoCAD software as well as programming verification based on object ARX development environment, this paper finally reversed their developing technique and mathematic models of biarc spline, B-spline and NURBS(non-uniform rational B-spline) curve in AutoCAD software.
通过对AutoCAD软件中各类样条曲线的功能及其DXF组码深入分析,并用object ARX二次开发环境进行编程验算,反求出了AutoCAD中的双圆弧样条曲线、NURBS样条曲线以及B样条曲线的具体实现技术及数学模型,并对AutoCAD环境下各类样条曲线的数控加工编程进行了讨论。
2) Biarc-arc B-spline
双圆弧B样条
3) arc spline
圆弧样条
1.
A new curvature-based algorithm in free-form curve fitting was proposed to fit a 2D NURBS profile with an arc spline,where a new form of curvature formula with matrix representation was also proposed,and then the arc spline tool path with G~(1) continuity was generated.
给出了一种平面曲线轮廓的圆弧样条拟合及刀具路径生成算法,该算法面向零件轮廓的光顺性刀具路径生成,通过应用曲线的曲率关系,对以NURBS表示的被拟合自由曲线按参数递增的方向用G1连续的圆弧或直线段逐段拟合,并生成相应的圆弧样条刀具路径,从而实现零件曲线轮廓表面的光顺加工。
2.
An algorithm for data approximation with global optimal biarc spline is presented in this article.
提出了用整体最优双圆弧样条拟合离散数据点的算法。
3.
This paper presents a new spline──arc spline.
本文介绍了一种新的样条曲线──圆弧样条,在解求其平行线时可能发生的"小弧"现象,需专门程序处理。
4) Circular-arc spline
圆弧样条
1.
Building on mathematical theories of calculation geometric and function approaching method, circular-arc spline fitting and biarc fitting are gived for tabulated curve, circular-arc spline fitting is invariant in geometry , it is simple and accurate than other kinds of spline curve in calculation.
文章从计算几何、函数逼近论等数学理论出发,对列表曲线进行了圆弧样条拟合和双圆弧拟合。
2.
Based on the fitting programming for non- round curve and tabulated curve and the application of numerical control processing,circular-arc spline function fitting and biarc fitting are effective ways of solving the problem of non- round curve fitting and tabulated curve fitting.
在对非圆曲线和列表曲线拟合编程及应用于数控加工实践的基础上,提出了圆弧样条函数拟合和双圆弧拟合是解决非圆曲线和列表曲线拟合的有效途径。
5) arc spline curve
圆弧样条曲线
6) circular arc spline in the three-dimensional space
空间圆弧样条
补充资料:B样条曲面
B样条曲面
B-spline surface
B yangtiao qumianB样条曲面(Bsp一ine surface)用分段B样条多项式函数及控制点网格定义的面。基于B样条曲线,可以得到B样条曲面的表示式。给定(m+1)(n十l)个空间点列凡(i=0,1,…,m,]=0,1,…,n),则s(二,w)一艺艺尸。从,*(。)凡,,(w),该二0少=O u,功任[0,1」定义了kXz次B样条曲面。式中从,*(u)和凡,,(w)分别是k次和l次的B样条基函数,由凡组成 的空间网格称为B样条曲面的控制点网格。上式 也可写成如下的矩阵式称(u,二)二认呱几M王w王,y任[l,。+2一划 z任[l,n+2一z〕,u,wC〔O,1」式中y,z—表示在u,w参数方向上曲面片的 个数。 Uk=[。‘一‘,uk一2,…,u,1〕, 钱二仁砂一’,砂一2,…,w,1〕, 凡,二氏,i任[y一1,y+k一2〕, ,任仁z一1,z+z一2] 凡是某一个B样条面片的控制点编号。最常用的 是二、三次均匀B样条曲面的构造。 (1)均匀双二次B样条曲面 已知曲面的控制点巧(i,]=o,1,2),参数u、 二,且O镇u,w簇1,k=l=2,构造步骤是: ①沿w(或u)向构造均匀二次B样条曲线,即 有 ,「‘一“P0(w,一L矿“」[一::侃同哪 WMs经转置后尸。(w)=「尸oo尸。,尸。2〕磷wT;同上可得P,(二)=[尸,。尸,,尸,2」M五WT pZ(二)=[pZ。p21 p22]M百wT ②再沿u(或w)向构造均匀二次B样条曲线,即可得到均匀双二次B样条曲面。 ,L 11﹁.!一|到泊恤、、/)pp(w嘿的嘿编s(u,w)二UM日(w T W TB M翻川州护P PP=UM白 匕PZo P21简记为s(u,二)二〔侧砂呵百wl (2)均匀双三次B样条曲面 已知曲面的控制点八(£,j=o,1,2,3),参数u,二且“,w任【0,1],构造双三次B样条曲面的步骤同上述,其矩阵形式是 S(u,w)=L时正声吸至百wT, 门几创川川旧洲翻叼--302 1222犯尸尸尸P尸尸尸尸尸冲尸峥 一一 P月J月j 3一6,l八、︶n”4.内J,1卜|匡IL 1一6 一一 姚双三次B样条曲面如图1所示。图1双三次B样条曲面
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条