1) generalized Stirling number
广义Stirling数
1.
Using generalized Stirling numbers,this paper generalizes the results of L.
本文利用广义Stirling数,推广了L。
2) generalized Stirling numbers
广义Stirling数
1.
We study the generalized Stirling numbers Sr,s(k) and generalized Bell polynomial which arise in the solution of the normal ordering problem for a general form of boson string(a+)rnasn…(a+)r1as1 in algebric method.
用代数的方法研究了一般形式boson序列(a+)rnasn…(a+)r1as1规范序问题中的广义Stirling数Sr,s(k)和广义Bell多项式,给出了Sr,s(k)在代数上的解释,并得到了广义Bell多项式的递推关系。
3) the general Stirling numbers of second kind
广义第二类Stirling数
1.
In the paper,we obtain the general Stirling numbers of second kind by the number of cut methods of a limited set,and then Stirling number of second kind becomes its solid example.
本文利用对有限集合的分划方案数提出了广义第二类Stirling数,使第二类Stirling数成为它的特例,并证明了广义第二类Stirling数的基本性质。
4) generalized Stirling number of the second kind
广义的第二类Stirling数
5) stirling number
Stirling数
1.
Several identity involving Stirling numbers,Bell numbers and order Bell numbers et al.;
关于Bell数、有序Bell数及Stirling数的几个恒等式
2.
At the same time, it puts forward successive derivatives of some abstract compound functions and simplifies the result by making use of Stirling Number.
给出了Fa dibruno公式在函数逐次求导上的应用定理并给出了证明 ,同时应用此定理给出了一些抽象复合函数的逐次导数 ,并利用Stirling数对结果进行简化。
3.
In this paper,the Akiyama-Tanigawa algorithm for Bernoulli polynomials and Euler polynomials was investigated,a new kind of closed formulae for Bernoulli polynomials and Euler polynomials are given via Stirling numbers.
研究Bernoulli多项式和Euler多项式的Akiyama-Tanigawa算法,利用Stirling数分别给出它们的一类新的封闭计算公式。
6) Stirling numbers
Stirling数
1.
The author studied the power series expansion of the generating function of two types of higher order Bernoulli numbers by using their definitions and the definitions of the two types of Stirling numbers,S_1(n,k) and(S_2(n,k));and obtained some inherent relationships between the two types of higher Bernoulli nubers and the two types of Stirling numbers.
利用第一、二类高阶Bernoulli数和二类Stirling数S1(n,k),S2(n,k)的定义。
2.
Using the definitions of n-order Bernoulli Numbers and the Stirling Numbers of the first kind and second kind,the relations betweer them were studied,some identical relations betweer Bernoulli Numbers and Stirling Numbers were obtained.
利用高阶Bernoulli数第一类Stirling数S1(n,k)和第二类Stirling数S2(n,k)的定义,研究了其母函数的幂级数展开,揭示了高阶Bernoulli数和第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)之间的内在联系,得到了几个高阶Bernoulli数和第一类Stirling数S1(n,k)、第二类Stirling数S2(n,k)有趣的恒等
3.
Here the partial sums ζn(r) =∑j=1n/jr, r≥1, so the Riemann-Zeta function ζ(k) can be expanded as the series involving Stirling numbers of the first kind.
本文证明了1-u1u2…uk的n-1阶矩(n≥1)是以调和数的部分和ζn(r)=∑j=1n 1/jr,r≥1为变元的指数型完全Bell多项式,因此Riemann-Zeta函数ζ(k),k≥2能够被展开成第一类无符号Stirling数s(n,k)的级数,从而计算出与ζn(r)有关的全部6个五阶和式。
补充资料:Stirling插值公式
Stirling插值公式
Stirling interpolation fonmda
Stirl吨插值公式【Sti山峨血翻,肠d朋肠ml回巨;O即朋-“raH“Tepno朋u”OHH即咖pM”a」 在点x=x。,+rh关于结点x‘,,x。+h,x〔,一h,二,凡,+汕,凡,一。h的向前插值的Gauss插值公式(Gauss interPolation fonll川a) GZ。(气,十。、卜.lb+.、/2。+;丝箭且十十几,业牛工工+、允一l业上」且业二丝十…十 3!J‘,4! +、补互二型且泣匡卫远立土坦二业 (Zn)!和关于结点x‘,,x‘,一h,义。+h,二,x。一nh,x。+nh的向后插值的同阶Ga理沼公式 。,二、,.,.,.。t‘t十1、GZ·(‘。十亡”)一f0+灵·,Zt+片丛污岁2~十二+ 十片丝二二丝鱼匕二业二业1匕上吐 (Zn)!的半和. 应用符号 f扩一粤[j·{片,+f当习], 2“J”‘J一’/ZJ’Stirling插值公式取以下形式几。(·卜LZ。(/《)+。。卜、十tj:+于;十…十 +.兰工二二生匕~匡止.达二旦且、资一l+ (Zn一I)! 十丝二二丝二匡二些二上红户 (2双)!对小的t,Sti山ng插值公式比其他插值公式更精确.卜卜注】中心差分f沁从和厂)111(。=0,1,…,i二··一1,0,1,…)是由(表值).厂甘=j(从,+ih)用公式户各’一户!一户;厂”’一户弓一户习递归定义的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条