1) birefringent filter
双折射滤光片
1.
Simulate birefringent filters suppressing noise of green laser with computer;
计算机模拟双折射滤光片抑制绿激光器噪声
2.
Study on dispersion characteristics of a tilted birefringent filter;
双折射滤光片的色散特性研究
3.
Based on the new results of studying extraordinary rays′ behavior and the refractive index of the extraordinary wave in uniaxial crystal , an exact model of the optical path difference yielded by birefringent filters is set up.
在研究双折射现象中非寻常光行为及折射率的新结果的[1,2]基础上,建立了准确的光程差模型,给出了无Δn=no-ne≤no(或ne)近似的双折射滤光片产生位相差的精确公式。
2) birefringent filter(BF)
双折射滤光片(BF)
3) birefringent filter
双折射滤波片
1.
A diode-pumped, single-frequency,intracavity frequency-doubled CW laser has been demonstrated using a 20 mm cavity consisting of a novel birefringent filter formed by a Brewster angle cut piece of Nd:YAG and a KTP doubling crystal.
在20mm激光腔内,Nd:YAG一端切成布氏角,与倍频晶体KTP组合构成双折射滤波片选择单纵模。
2.
Tuning characteristics of several birefringent filters in a quasi-cw dye laser are clarified in this paper.
阐明了几种双折射滤波片在准连续染料激光器中的调谐特性,得到了适用于该类激光器单片双折射滤波片的性能参数。
4) birefringent filter
双折射滤光器
1.
Application of ray tracing method to birefringent filter error analysis;
光线追迹法在双折射滤光器误差分析中的应用
2.
Hα birefringent filter design for the space solar telescope;
空间太阳望远镜中Hα双折射滤光器的设计
5) birefringent fiber filter
双折射光纤滤光器
6) birefringent plate
双折射片
补充资料:双折射滤光器
由双折射晶体构成的、利用偏振光的干涉作用得到充满视场的单色光的仪器。又称偏振干涉滤光器或李奥滤光器,是李奥和奥曼分别于1933年和1938年独立发明的。主要用于太阳的单色光观测,最常用的双折射滤光器,其透射带半宽在0.1~1埃之间。大多数的工作波长为6563埃。
偏振光进入光轴平行于通光表面的双折射晶片后,分成振动方向垂直于晶轴的寻常光和平行于晶轴的非常光。出射时,它们之间具有以波长λ为单位的光程差n=μd/λ。这里d为晶片厚度,μ是双折射率,即寻常光与非常光折射率之差。若再通过一偏振片,两束光就发生干涉。当偏振片的偏振轴平行于入射光的振动方向,且同晶轴成45°时,透射光强度为:τ=cos2nπ。n为整数时,τ有极大值;而当n为半整数时,τ为零。因此,若入射光是白光,便得到明暗相间的透过带。透射率曲线如图1a。图1b和图1c是厚度为2d和4d的晶片与偏振片组合后的透射率曲线。若偏振光相继通过以上三个组合,便得到如图1d所示的相隔较远的狭窄的透射带。将这样的组合增加到足够多(其中每块晶片的厚度都是它前面晶体厚度的 2倍)时,可得到足够窄的透射带。带两旁第一个零点之间的波长间隔与最厚一级的相同,透射带极大值之间的波长间隔与最薄一级的相同。这种组合称为李奥Ⅰ型简单级滤光器。图 2是其中三个级的组合。
埃文斯提出将简单滤光器的一个级分成厚度相等的两半。中间夹入另一级,一起放在两正交偏振片之间,如图3所示,图中短线表示晶轴或偏振轴的方向。透过这种组合的光强度为:其中np和nj分别为中间级和分开级的光程差。这种形式称为分开级滤光器。由于两偏振片之间放了两级晶体,所以可比简单滤光器省掉约一半数量偏振片,使透射率大为提高。
另一种索克滤光器由夹在两偏振片之间的若干厚度相等的晶片构成。各相邻晶片的晶轴方向之间的夹角和两端的晶片晶轴与偏振片光轴之间的夹角可以有多种方式来确定。改变索克滤光器中晶片之间的相对方位可使透射极大的位置与透射带轮廓发生变化。由于整个滤光器只用两块偏振片,所以其透射率可比李奥滤光器大为提高。
若以最薄的晶体级透射带间隔作为标准,在滤光器主极大带两旁总宽度范围内,次级带的总能量大约为主带能量的10%,索克滤光器的要更强一些。
不同方向的光线通过晶体后出射,有不同的光程差。因此,斜光线通过滤光器所引起的主极大的位移和次级带能量的增加便会限制视场。一般说来,滤光器的可用视场约为 1°。李奥将滤光器的一级分成厚度相等的两半,光轴互相正交,中间放一1/2波片,这样的级能扩大视场,称为宽场级。将滤光器中透射带较窄的级改为宽场级,可将其视场扩大到4°左右。
太阳观测有时要求滤光器的主带位置向紫翼或红翼作小范围的移动。为实现这一要求,现已研制成功在可见光范围内可调到任意波长处的滤光器。双折射物质的μ值与温度有关。因此滤光器需在恒温下工作,以避免由温度变化引起的透射带位移。为了减少反射损失和杂散光,所有元件都浸在硅油中。最常用的双折射材料是水晶和冰洲石晶体。
偏振光进入光轴平行于通光表面的双折射晶片后,分成振动方向垂直于晶轴的寻常光和平行于晶轴的非常光。出射时,它们之间具有以波长λ为单位的光程差n=μd/λ。这里d为晶片厚度,μ是双折射率,即寻常光与非常光折射率之差。若再通过一偏振片,两束光就发生干涉。当偏振片的偏振轴平行于入射光的振动方向,且同晶轴成45°时,透射光强度为:τ=cos2nπ。n为整数时,τ有极大值;而当n为半整数时,τ为零。因此,若入射光是白光,便得到明暗相间的透过带。透射率曲线如图1a。图1b和图1c是厚度为2d和4d的晶片与偏振片组合后的透射率曲线。若偏振光相继通过以上三个组合,便得到如图1d所示的相隔较远的狭窄的透射带。将这样的组合增加到足够多(其中每块晶片的厚度都是它前面晶体厚度的 2倍)时,可得到足够窄的透射带。带两旁第一个零点之间的波长间隔与最厚一级的相同,透射带极大值之间的波长间隔与最薄一级的相同。这种组合称为李奥Ⅰ型简单级滤光器。图 2是其中三个级的组合。
埃文斯提出将简单滤光器的一个级分成厚度相等的两半。中间夹入另一级,一起放在两正交偏振片之间,如图3所示,图中短线表示晶轴或偏振轴的方向。透过这种组合的光强度为:其中np和nj分别为中间级和分开级的光程差。这种形式称为分开级滤光器。由于两偏振片之间放了两级晶体,所以可比简单滤光器省掉约一半数量偏振片,使透射率大为提高。
另一种索克滤光器由夹在两偏振片之间的若干厚度相等的晶片构成。各相邻晶片的晶轴方向之间的夹角和两端的晶片晶轴与偏振片光轴之间的夹角可以有多种方式来确定。改变索克滤光器中晶片之间的相对方位可使透射极大的位置与透射带轮廓发生变化。由于整个滤光器只用两块偏振片,所以其透射率可比李奥滤光器大为提高。
若以最薄的晶体级透射带间隔作为标准,在滤光器主极大带两旁总宽度范围内,次级带的总能量大约为主带能量的10%,索克滤光器的要更强一些。
不同方向的光线通过晶体后出射,有不同的光程差。因此,斜光线通过滤光器所引起的主极大的位移和次级带能量的增加便会限制视场。一般说来,滤光器的可用视场约为 1°。李奥将滤光器的一级分成厚度相等的两半,光轴互相正交,中间放一1/2波片,这样的级能扩大视场,称为宽场级。将滤光器中透射带较窄的级改为宽场级,可将其视场扩大到4°左右。
太阳观测有时要求滤光器的主带位置向紫翼或红翼作小范围的移动。为实现这一要求,现已研制成功在可见光范围内可调到任意波长处的滤光器。双折射物质的μ值与温度有关。因此滤光器需在恒温下工作,以避免由温度变化引起的透射带位移。为了减少反射损失和杂散光,所有元件都浸在硅油中。最常用的双折射材料是水晶和冰洲石晶体。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条