2) sum of numerical series
数值级数的和
3) generalized sum
广义级数的和
4) sum of infinite series
无穷级数的和
5) harmonic series
调和级数
1.
Divergence and Application of Harmonic Series;
调和级数的发散及其应用
2.
This paper put forward a recurrence formula through calculation and synthesis,based an harmonic series theory.
通过计算、综合、证明等步骤,得出飞机空中加油问题的递推公式,并以调和级数等相应的数学理论为基础来解决。
3.
A proof of existence of primitive functions of a continuous function with area principle is introduced,and the divergence of the harmonic series in area method is also proved.
用面积原理证明了原函数存在定理;给出了调和级数发散性的面积方法证明。
6) summation of series
级数求和
1.
In this paper, a method of difference in summation of series is presented.
提出了一种级数求和的差分方法,讨论了差分的相关概念与性质,并应用差分法求某一类数项级数的部分和。
2.
new method of calculating summation of series is constructed by using a set of suitable wave functions in an infinite square potential well of one dimension.
利用一维无限深方势阱中一套适当的波函数,建立了一种新的级数求和方法。
补充资料:d’Alembert准则(关于级数收敛性的)
d’Alembert准则(关于级数收敛性的)
d'Akmbert criterion (convergence of series)
如果 }u.,1 。一二]u。i则级数可能收敛也可能发散;两个级数 呈兴和呈一菩叫 自矿’m自在都满足这个条件,但第一个级数是收敛的,而第二个级数是发散的. 这个准则是J.d,A肠nbert确立的(1768). J’I,八.均刀p朋uea撰【补注】这个准则也称为比值检验法(mlio馏t),见[A 11.d,A如咧bert准则(关于级数收敛性的)【d’A如11加时州触.南n(。皿到段咨”沈Of Sed昭);八‘从aM6epa nPo3。奴} 对于数项级数 五u一如果存在数q,O
1. ”~田!u。!则这个级数发散.例如,对于一切复数z,级数 杀z” n.I月!绝对收敛,因为 I_”+11 }Z一} l(玲十l)!} 凡~仍}公一} }”:}而对于一切:砖。,级数艺篡1。!广发散,因为 俪」色山」兰兰上=十二. ”~田!n!2一!
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条